
Imperial College London
Department of Computing

Disaggregating Smart Meter Readings using
Device Signatures

by

Daniel A. Kelly (aka Jack)

Submitted in partial fulfilment of the requirements for the
MSc Degree in Computing Science of Imperial College London

September 2011

Abstract

Wise management of electricity consumption is becoming increasingly important. Domestic elec-
tricity prices in the UK increased by 35 % over the past 8 years; an upward trend which is unlikely
to reverse any time soon. As well as the economic costs, the environmental problems associated
with the combustion of fossil fuels are becoming increasingly detrimental to the well-being of many
species, including our own.

One of the cheapest and easiest ways to improve energy efficiency is to monitor one’s electricity
consumption using a type of smart meter called a “home energy monitor” available for around £40.
These display whole-house consumption in real-time, allowing the user to learn which devices and
behaviours consume the most energy. Studies have demonstrated that the feedback provided by
energy monitors can enable users to reduce consumption by 5-15 %. If every domestic user in the
UK reduced electricity consumption by 10 % then the UK’s annual CO2 output would be reduced
by 6 million tonnes. However, the information displayed by home energy monitors is not as useful
as it could be.

Home energy monitors measure aggregate consumption for an entire building. Research has
demonstrated that disaggregated information describing appliance-by-appliance energy consump-
tion is more effective than aggregate information. Disaggregation was first successfully implemen-
ted in the 1980s using sophisticated smart meters which provide rich, multi-dimensional raw sensor
data. However, these sophisticated meters are not readily available at present.

The main contribution of this project is to design, implement and evaluate three different al-
gorithms for disaggregating the sparse, one-dimensional data output by inexpensive, popular and
readily available home energy monitors. Each design is trained to recognise a device on the basis
of one or more raw recordings of single-device power consumption (which we call signatures). The
system is then given an unseen aggregate signal from which it must infer the start times, run
duration and energy consumption of each device activation present in the aggregate data.

The first design is a simple prototype which uses a least mean squares approach to matching
a signature to an aggregate signal. As expected, this design succeeds only in a very limited set
of contexts but the development of this prototype provided valuable insights. The second design
represents a novel approach to determining a set of device power states by identifying peaks in the
histogram of the device’s signature but this design proved to not be ideal.

The final design presented in this dissertation represents a novel approach to disaggregation
whereby each device is modelled as a power state graph. Each graph vertex (node) represents a
power state and each edge represents the conditions necessary to transition from the source to the
destination power state. During disaggregation, every possible “fit” of the power state graph to
the aggregate data is represented as a tree structure where each tree vertex represents a power
state and each tree edge represents the likelihood for the corresponding power state transition. For
each complete “fit” of the power state graph to the aggregate data, the disaggregation algorithm
reports the start time, the average likelihood, the estimated run time and the estimated total energy
consumption. This design has several attractive features: 1) it handles both simple devices and
complex devices whose signatures contain power state sequences which repeat an arbitrary number
of times; 2) it is probabilistic; 3) a power state graph can be learnt from one or more signatures
and 4) the design estimates the energy consumed by each device activation.

This design was evaluated by training it to recognise four real devices: a toaster, a kettle, a
washing machine and a tumble drier. The system was then given 13 days of real aggregate data.
For all devices except the tumble drier it detected every device activation in the aggregate data
although there were a few false positives. The system failed to model the tumble drier, possibly
because the drier has very rapid state transitions.

3

Acknowledgements

I would like to thank my parents for letting my wife and I live at their house while our own home
was uninhabitable due to building work. I did a lot of the coding for this project whilst sat in my
parents’ dining room and, on sunny days, in the back garden. Both my parents provided many
stimulating ideas for my MSc project. All the raw data for this project were collected at my parents’
house.

I would also like to thank my MSc project supervisor, Dr Will Knottenbelt for his constant sup-
port, infectious enthusiasm and lightning-fast responses to my emails. Dr Knottenbelt’s excellent
“Intro to C++” course at the start of the MSc was a genuine joy to attend, was very instructive
and instilled in me a great affection for C++ (although I know I still have a great deal to learn!)
After programming in Java and Matlab during the 2nd term of the MSc, returning to C++ for my
project felt like “coming home”.

I must thank my golden retriever, Scout. Taking her for walks every day provided a healthy
break from coding. It’s also fair to say that I did 90 % of the design whilst out on walks. I’ve
lost track of the number of times I became stuck on a problem which felt unsolvable whilst coding
but a solution revealed itself somewhere in Peckham Rye; usually between the duck pond and the
playing fields.

Finally, I must thank my wonderful wife, Ginnie. She has provided constant support, love
and affection. Despite being heavily pregnant, she took on the vast majority of the work load
associated with managing the building work on our home, allowing me to focus on my project.
She’s an amazing woman and I’m very lucky to have found her.

Dedication

This project is dedicated to my daughter, Olive, born on the 27th August 2011 (two weeks before
this report’s deadline!)

4

Contents

1. Introduction 7
1.1. Background . 8

1.1.1. The importance of reducing energy demand 8
1.1.2. Energy consumption behaviour . 11
1.1.3. Two types of smart meter . 12
1.1.4. Existing disaggregation techniques . 13

1.2. Broad aims and research direction . 17
1.3. Dissertation outline . 17
1.4. Terminology used in this report . 18

2. Setting up the measurement and logging equipment 19
2.1. Recording whole-house aggregate power consumption 19
2.2. Recording device signatures . 20

3. Early prototype 21
3.1. Prototype version 1 . 21
3.2. Prototype v2: compensating for dropped measurements 22
3.3. Prototype v3: offsetting & compensating for sample-rate mismatch 22

3.3.1. Offsetting . 22
3.3.2. Sample-rate mismatch . 23
3.3.3. Accuracy of prototype v3 . 23

3.4. Further experiments: finally achieving automated alignment of all devices 23
3.4.1. Kettle and toaster . 23
3.4.2. Washing machine . 23

3.5. Failure to generalise . 24
3.6. Prototype summary: lessons and limitations . 25

4. First design: histograms and power states 27
4.1. Aims . 27
4.2. Broad design principals . 27
4.3. Which programming language? . 27
4.4. Training strategy . 27
4.5. Disaggregation strategy . 29
4.6. Implementation . 29

4.6.1. Doxygen HTML code documentation . 29
4.6.2. Extracting a set of power states from the raw signature 29
4.6.3. Extracting a power state sequence . 33
4.6.4. Data output . 33

4.7. Flaws in the “histogram” design . 34

5. gnuplot template instantiation system 35
5.1. Implementation . 36

5.1.1. gnuplot output . 36
5.2. Limitations and future work . 37

6. Final design iteration: graphs and spikes 39
6.1. Introduction . 39

5

Contents

6.2. Design . 41
6.2.1. Overview of training algorithm . 41
6.2.2. Overview of disaggregation algorithm . 44

6.3. Implementation . 49
6.3.1. Maintaining “legacy” functions and classes 49
6.3.2. Boost graph library . 50
6.3.3. Overview of the PowerStateGraph class . 52
6.3.4. Updating statistics . 54
6.3.5. Non-zero standard deviation & calculating likelihood 54
6.3.6. Indexing aggregate data by timecode . 55
6.3.7. Data output . 55
6.3.8. Boost program options . 56
6.3.9. Refinements . 56
6.3.10. Parameters . 57
6.3.11. Testing and debugging . 58

6.4. Performance . 60
6.4.1. 10July.csv aggregate data . 60
6.4.2. 3 days of aggregate data (earlyJuly.csv) . 69
6.4.3. 10 days of aggregate data (earlyAugust.csv) 69
6.4.4. Conclusions . 69

7. Conclusions and future work 71
7.1. Limitations . 71
7.2. Other applications of this work . 71
7.3. Further work . 72

7.3.1. Combine all three approaches . 72
7.3.2. Machine learning approaches . 72
7.3.3. More efficient implementation & parallelisation 73
7.3.4. Try a simpler approach based on non-invasive load monitoring 73
7.3.5. Remove deprecated sections of code . 73
7.3.6. Capture relationships between devices . 73
7.3.7. Capture the probability that a device is active at a given time of day 73
7.3.8. Ultimate aim: to build a smart meter disaggregation web service 74

7.4. Conclusion . 75

A. User guide 77
A.1. Input files . 77
A.2. Output files . 78
A.3. Configuration file . 78
A.4. GNUplot templates . 78
A.5. Runtime dependencies . 78
A.6. Compiling from source . 78

A.6.1. Compilation dependencies . 79
A.7. Generating Doxygen documentation . 79
A.8. Running unit tests . 79

B. Further (simplified) code listings 81
B.1. Training code . 81
B.2. Disaggregation code . 82

C. Software engineering tools used 85

Bibliography 85

6

1. Introduction

Consider someone who has just received a painfully expensive electricity bill. She decides to make
a concerted effort to do a better job of managing her electricity usage. What information can she
use in order to determine the best course of action? She would probably find it useful to know how
much energy each appliance consumes. Even more useful would be the knowledge that, for example,
if she replaced her twenty year-old fridge with a newer model then it would pay for itself in two
years. The aim of this project is to design and implement a software tool which “disaggregates” the
whole-house electricity consumption data recorded by widely available metering hardware; hence
providing easy access to “appliance-by-appliance” energy consumption data.

Managing electricity consumption as wisely as possible is becoming an increasingly pressing is-
sue. Yet many energy consumers struggle to manage consumption effectively because their intuition
fails to provide an accurate estimate of the quantity of energy each appliance uses [41]. Evidence
shows that energy feedback information provided by smart meters can enable consumers to reduce
consumption by 5-15 % [29] and that “appliance-by-appliance” disaggregated information is more
useful than aggregate information [31]. If every domestic user in the UK reduced electricity con-
sumption by 10 % then not only would they reduce their bill by 10 % but six power stations could
be closed, reducing the UK’s CO2 output by six million tonnes per year.

0

1

2

3

whole-house aggregate power consumption

p
ow

er
(k

W
)

0

1

2

3

11:00 12:00 13:00 14:00 15:00 16:00 17:00

time

individual device power consumption

p
ow

er
(k

W
)

kettle

toaster

washing machine tumble drier

Figure 1.1.: An afternoon’s electricity consumption in a domestic dwelling. The top panel shows
whole-house aggregate power consumption. The lower panel shows the individual power
consumption of four devices. The data in the top and bottom panels were recorded
simultaneously using two meters.

7

1. Introduction

Figure 1.1 demonstrates the task at hand. The “whole-house aggregate” plot shows the electricity
consumption of an entire domestic dwelling measured using a smart meter installed near the fuse
box. The power consumption of individual appliances is plotted in the lower panel.

1.1. Background

1.1.1. The importance of reducing energy demand

It is becoming increasingly important to better manage electricity consumption. Domestic electri-
city prices in the UK increased by 35 % (in real terms) between 2003 and 2011 [15]. Energy price
rises alone are projected to inflate the UK consumer prices index by 1.5 % in Q4 2011 [17], making
energy one of the most dominant upward forces acting on UK consumer prices. This upward price
trend is likely to continue as global energy demand, especially from non-OECD countries, contin-
ues to grow. In 2000, China used half as much energy as the USA. In 2009, China overtook the
USA to become the world’s largest energy user [11]. The International Energy Agency projects
that Chinese consumption will increase by 75 % between 2008 and 2035, and that Indian energy
consumption will more than double over the same period (although India will still consume less
energy in 2035 than either the USA or China) [11].

The UK is especially exposed to energy price rises. The UK makes extensive use of natural gas
for heat and power generation. Between 1995 and 2004 the UK was not just self-sufficient for gas
but it was also a net exporter of natural gas pumped from the North Sea [20]. Gas production from
the North Sea peaked and began its terminal decline in 2000 hence the UK has been a net importer
since 2004 [20], requiring us to buy increasing amounts of gas on the volatile global market. Gas
production from the North Sea halved between 2000 and 2010 (see figure 1.2)1.

40

60

80

100

120

1990 2000 2010

g
as

v
o
lu

m
e
m

3
×

10
9

year

production
consumption

Figure 1.2.: UK natural gas production and
consumption. Data from BP Statistical Review [20].

Market fundamentals are not the only up-
ward pressure on energy prices. Many gov-
ernments now deploy policy mechanisms to en-
courage individuals and organisations to move
away from polluting power sources. Coal, which
has historically been the cheapest form of en-
ergy, is becoming economically unattractive due
to the costs of scrubbing sulphur dioxide from
the flue gasses and, soon, capturing and storing
CO2. The UK’s Climate Change Act [6], passed
into law in November 2008, commits the UK to
an 80 % reduction in carbon emissions by 2050
(compared with 1990). Energy taxes in the UK
include the Climate Change Levy [13] and the
Renewables Obligation [3].

The production of electricity also has envir-
onmental costs. In 2010, 75 % of the UK’s
electricity was produced from hydrocarbon-
fired power stations [14], producing 191 million
tonnes of CO2. This represents 39 % of the

UK’s total CO2 emissions, making electricity generation the largest single source of CO2 in the
UK [21]. The domestic sector is the single largest load on the electricity grid, accounting for 31 %
of the UK’s electricity demand [14]. Whilst there has been increasing media attention on CO2, it
is worth briefly considering some peer-reviewed evidence not least because media coverage of the
issue is often more noise than signal.

1Recent research suggests the UK may have substantial “unconventional” gas reserves in the form of on-shore shale
gas. The British Geological Survey believes the UK may be sitting on 150 × 109 m3 of shale gas [19]. However,
to put this into perspective, the UK consumes 100 × 109 m3 of gas per year, so our shale gas reserves will not
fundamentally change our energy mix (unlike in the USA where shale gas has been a “veritable game changer”:
shale gas currently accounts for 23 % of US gas supply and is projected to grow to 40 % by 2030 [22]).

8

1.1. Background

Figure 1.3.: A history of earth’s surface temperatures for the past 420,000 years, adapted from
[51]. Note the unusually narrow temperature range over the past 10,000 years.

Human activity worldwide currently produces 29 billion tonnes of CO2 per year [5]. Since the
industrial revolution began in 1880, atmospheric CO2 concentration has increased from 280 parts
per million to 391 ppm in 2011 [4], higher than any time during the last 800,000 years [45], and
likely higher than any time in the past 20 million years [50] (to put this into some context: anatom-
ically modern humans are hypothesised to have first appeared around 200,000 years ago [46] and
agriculture began around 10,000 years ago [35]). This increased CO2 concentration has two main
detrimental effects on the environment: it enhances the “greenhouse effect” [68, 5] by reducing
the rate at which the planet loses infrared radiation into space and it acidifies the oceans [25, 48],
damaging marine ecosystems.

1880 1900 1920 1940 1960 1980 2000

 −.4

 −.2

 .0

 .2

 .4

 .6

Annual Mean
5−year Running Mean

Global Land−Ocean Temperature Index

T
em

pe
ra

tu
re

 A
no

m
al

y
(°C

)

Figure 1.4.: A recent history of global surface
temperatures, taken from [16].

There is a considerable body of evidence in-
dicating that the world’s systems are already
changing. For example: the amount of infrared
radiation emitted from the top of the atmo-
sphere into space is decreasing [37] (consistent
with the hypothesis that increased atmospheric
CO2 concentration scatters more IR back to
earth’s surface), global land-ocean temperat-
ures increased by 0.9°C over the period 1880
to 2010 (figure 1.4) [36, 16], ocean heat con-
tent is increasing [55], Arctic sea ice is decreas-
ing in extent [40] and volume2 (see figure 1.5)
[56, 12], the Greenland and West Antarctic ice
sheets are losing mass [26], the tropical belt is
widening [57], plant populations are moving to
higher altitudes [44], seasons are starting earlier

[62], sea level rose 195mm between 1870 and 2004 and the rate of sea level rise is accelerating [27].

Projections for future climate come with considerable uncertainty but ensemble modelling sug-
gests that, if we continue on current emissions trajectories, the world is likely to warm by at least
2°C by 2100 and possibly by as much as 6°C [54, 5]. The last time the planet was 2°C warmer than
today was 10 million years ago. This warming is likely to have many adverse effects, not least of
which are the desertification of many currently arable areas [7] and a probable sea level rise of 0.75
to 1.9 meters by 2100 [33, 65, 53]. Palaeoclimatology studies and modelling suggest that many of
these effects are likely to worsen over subsequent centuries and will be irreversible for at least the
next 3,000 years [61, 54]. (For a recent review of climate science, see [7].)

2There is some uncertainty over the thickness (and hence the volume) of the Arctic sea ice. Ice extent is relatively
easy to measure from satellite imagery but thickness is tricky to measure by satellite. The data shown in figure
1.5 are from a model of sea ice. Empirical measurements taken by the US Navy [12] and Polarstern icebreaker
research vessel [18] suggest the ice may be thinner than the model suggests but these measurements cannot
provide complete geographical coverage. Better ice thickness data will be available soon from the CryoSat-2
satellite, launched in April 2010 and currently in a calibration phase.

9

1. Introduction

Figure 1.5.: “Arctic sea ice volume anomaly from PIOMAS updated once a month. Daily Sea Ice
volume anomalies for each day are computed relative to the 1979 to 2010 average for that day of
the year. The trend for the period 1979- present is shown in blue. Shaded areas show one and
two standard deviations from the trend. Error bars indicate the uncertainty of the monthly
anomaly plotted once per year.” Taken from [56, 12]. This ice loss is unexplainable by any of the
known natural variabilities [52]. If this trend continues then we will see an ice-free summer
Arctic within the next 30 years [66]. Mean total Arctic ice volume was about 15,000 km3 from
1979-2010; so a y-axis value of about “-15” on the graph above corresponds to zero ice volume.

What effect might this have on humans? Human technological evolution over the past 10,000
years has taken place in a remarkably stable climate (see figure 1.3) [51, 54]. It has been proposed
that this stable climate aided human societal development [28]. Unfortunately, paleoclimate data
also demonstrates the stability experienced over the past 10,000 years is the exception rather than
the norm [28] and that human emissions may push the climate away from this stable state [54] into
a state never experienced by the human species, let alone our 21st-century infrastructure.

Is there a “safe” amount of warming? At the 2009 United Nations Climate Change Conference
in Copenhagen, 138 countries signed an agreement stating that actions should be taken to keep
the temperature increase below 2°C. The 2°C target is a compromise. Even with just 1.5°C of
warming, it is extremely likely that low-lying islands will be submerged. But, above about 2.5°C
[7] is the temperate range that studies suggest could initiate the total melting of Greenland’s ice
sheet which contains enough water to raise sea levels by 7 meters [24]. By how much do we need
to reduce emissions in order to provide a reasonable chance of keeping warming below 2°C? Figure
1.6 illustrates that, if we want a 75 % chance of limiting warming to 2°C then global emissions need
to peak by 2020, decline rapidly and then go negative in 2070! It’s an extremely tough challenge
but it is technologically feasible.

What can be done to minimise the risk of climate change? Humanity’s technological sophist-
ication may provide a key to decouple GDP growth from carbon emissions, allowing economies
to grow whilst maintaining a favourable environment. The UK, for example, has already reduced
its carbon emissions3 by 21 % since 1990, a decrease achieved partially through energy efficiency
measures (and a shift away from coal-fired power generation).

3Although cynics would say that the UK’s emissions reduction is due to the UK effectively off-shoring heavy industry.

10

1.1. Background

Figure 1.6.: “Energy-related emission trajectories
from 2000 to 2100 to achieve stabilisation of
greenhouse gases in the atmosphere at three different
targets (coloured lines). The black line is a reference
trajectory based on no climate policy. Estimated
(median) probabilities of limiting global warming to
maximally 2°C are indicated for the three
stabilisation targets.” Taken from [7]

In summary: there are multiple reasons to
manage energy consumption as intelligently as
possible. Increased energy efficiency may help
to ensure our quality of life remains high despite
growing costs of energy. The smart meter dis-
aggregation techniques discussed in this report
aim to provide energy consumers with practical
information to help them better manage their
consumption.

1.1.2. Energy consumption behaviour

Let us assume that people are motivated to im-
prove their energy management. Do they have a
sufficiently quantitative understanding of their
energy consumption to prioritise correctly?

Prior to the availability of mains energy sup-
plies, most individuals would have had an intu-
itive, quantitative understanding of the amount
of energy consumed by the household. If the
stove needed more fuel then someone had to
manually shovel solid fuel into it; you couldn’t help but notice how much energy was being con-
sumed. In this situation, most individuals would have an intuitive feel for how much energy it took
to, say, heat the living room for one evening or cook one meal.

In today’s industrialised societies, we do not have such a concrete, tangible understanding of the
amount of energy we use. It is a miracle of civil engineering that the energy equivalent of 3 tons of
coal4 is delivered into our homes every year without any noise, any manual labour, any dust, any
inconvenience for us.

Figure 1.7.: One “unit” of
energy, prior to mains utilities.

When we turn on an electrical device, it just works, without any
indication of how much energy it is consuming. Hence, when faced
with rising electricity bills, we struggle to prioritise correctly when
deciding which devices to turn off.

Studies on residential energy users show that the vast majority
are poor at estimating either the consumption of individual devices
or total aggregate consumption. Residents often underestimate the
energy used by heating and overestimate the consumption of per-
ceptually salient devices like lights and televisions [41]. Residents’
failure to correctly estimate energy consumption leads to higher
total consumption.

How significant is occupant behaviour in determining total en-
ergy usage? Energy use can differ by two or three times among
identical homes with similar appliances occupied by people from
similar demographics [60, 67, 58]. These large differences in en-
ergy consumption are attributed to differences in consumption be-
haviour. If the home provided better feedback about which devices
used the most energy then users could tweak their behaviour to make more efficient use of appli-
ances.

Studies have investigated which types of energy feedback information displays are most successful
in altering behaviour. Fischer [31] found that “the most successful feedback combines the following
features: it is given frequently and over a long time, provides an appliance-specific breakdown,
is presented in a clear and appealing way, and uses computerized and interactive tools.” (my

4Average UK household energy consumption: 20500 kWh gas + 3300 kWh electricity = 2.38 MWh total energy ≡
8.568×1010Joules. Heat content of coal is roughly 3 × 107J/kg. 8.568×1010Joules

3×107J/kg
= 2865 kg coal.

11

1. Introduction

Figure 1.8.: A typical “clamp-style” smart meter. The red unit on the left clamps around the
incoming mains supply to a building (picture from CurrentCost.com).

emphasis). Darby [29] reports that direct feedback normally reduces energy consumption by 5-
15 %. Disaggregated data is also of use to utility companies as it helps with load forecasting.

Providing consumers with disaggregated consumption data can play a part in decreasing primary
energy demand. But before we discuss disaggregating an aggregate energy signal, we need to
consider how to record an aggregate signal in the first place.

1.1.3. Two types of smart meter

There are two broad types of “smart meter”.

The first type is increasingly called a “home energy monitor” rather than a “smart meter”.
These typically cost around £40 and are bought, installed, maintained and used by consumers. An
example is show in figure 1.8. Several utility companies offer these devices for free. These home
energy monitors do not need to be installed by an electrician. Instead, they work by “clamping”
a sensor around a single mains supply cable at the fuse box. This sensor does not make electrical
contact with the mains cable; instead it surrounds the insulated mains cable with a wire coil.
Alternating current flows through the mains cable, which produces an alternating magnetic field
around the cable. This magnetic field, in turn, induces an electrical current in the home energy
monitor’s sensor. Hence the sensor is able to measure current passing through the mains cable.
This data is typically sent wirelessly to a display unit (up to 20 meters away) which allows the
user to see how much power the house is currently using. With a little bit of experimentation, it is
possible to get an intuitive feel for roughly how much power each device around the house uses by
switching the device on and off whilst watching the display.

The second type of smart meter replaces the “spinning disk” electromechanical utility meter cur-
rently installed in UK domestic dwellings. This smart meter is paid for, installed by, and primarily
of benefit to the utility company. These “proper” smart meters maintain two-way communica-
tion with the utility company. One advantage to utility companies is that they no longer need to
send a person to read consumers’ electricity meters because the smart meter transmits usage data
automatically to the utility company.

Utility-installed smart meters may be a necessary component of a “smart grid” (although alone

12

http://www.CurrentCost.com

1.1. Background

do not constitute a smart grid). For example, it is envisioned that smart meters could allow owners
of electric vehicles to profit by pushing energy back into the grid when demand for electricity (and
hence price) is especially high [34]. Why might this be a good idea? The UK plans to make
extensive use of wind power to generate electricity. The main problem with wind, of course, is that
it cannot be scaled up in response to increased demand. Hence some form of storage is required to
capture electrical energy when supply is plentiful, and to assist the grid when demand is greater
than supply. Electric vehicles have huge batteries; batteries which, on mass, are large enough to
make a meaningful contribution to the grid when demand spikes.

The UK government wants all homes to have utility-installed smart meters by 2019 [9]. British
Gas plans to have two million smart meters installed by 2012 [8].

This current project uses the “clamp” style home energy monitor because these are readily
available, cheap and around two million units have been installed5.

Home energy monitors only provide an aggregate energy reading, but we saw in section 1.1.2
that consumers benefit most from disaggregated data. How can we disaggregate the data?

1.1.4. Existing disaggregation techniques

The conceptually most straight forward way to determine how much power individual appliances
consume is to install separate meters on each device throughout the house. Such appliance-meters
are available from companies like AlertMe for £25 each. Installing separate meters on each appliance
is an expensive and inconvenient option for users who want to monitor every appliance in the house.
Can we use computational techniques to disaggregate the data recorded by a single smart meter
measuring the whole-house consumption?

Conditional Demand Analysis (CDA)

Field surveys have historically been used to acquire details about occupant behaviours. Survey
data, along with aggregate energy consumption data, can then be used as the input to conditional
demand analysis (CDA). The conditional demand analysis technique takes as its input the aggregate
data from a sample of homes and uses regression based on the presence of end-use appliances (as
reported by occupants) to generate a simple model describing aggregate energy usage as a function
of appliance usage. CDA is time dependent : it attempts to determine when appliances tend to
be used during the day (e.g. that toasters tend to be used in the morning). CDA regresses total
dwelling energy consumption onto a list of owned appliances. The determined coefficients represent
the usage level and power rating of each device [64].

CDA was developed by Parti and Parti in 1980 [49]. Their regression equations, one for each
month of a year of billing data, take the form

Emo =
∑
i

∑
app

capp,i(ViPapp)

where Emo is the monthly electrical energy consumption; Papp is a variable indicating the number
of appliances; V is a set of interaction variables with elements, i, such as the floor area, number of
occupants and income; and c is a regression coefficient.

In order to produce reliable results, the CDA technique requires data from hundreds or even
thousands of homes. Even with large datasets, CDA still produces relatively inaccurate results
because many end-uses share temporal load profiles and because the surveys tend to be inaccurate
[32]. See [64] for further discussion of the CDA technique.

Non-invasive load monitoring

Utility-installed smart meters can measure several variables at once: current, voltage, reactive
power and real power. Let us quickly describe the difference between reactive power and real power

5currentcostgroup.com

13

http://www.currentcostgroup.com/

1. Introduction

Figure 1.9.: Distinguishing between a heater and a fridge by comparing real and reactive power
consumption. The heater is a purely resistive load and hence pulls no reactive power. The
refrigerator mostly pulls real power but also pulls some reactive power. These two variables allow
us to discriminate between most devices. This diagram is taken from US patent 4858141, filed by
George Hart and colleagues from MIT in 1986 [39].

because this difference lies at the heart of the “classic” disaggregation technique called “non-invasive
load monitoring”.

Mains is an alternating current source. If the load is a simple resistive load like a heater then
current and voltage are perfectly in phase (as you might expect). Resistive loads obediently accept
changes in the supply voltage without opposition because they have no ability to store charge.

Some loads oppose the change inherent in an AC supply. These loads transiently store charge
because they have a capacitance or inductance. This stored charge causes them to react to change
in the supply. If the load is purely reactive then voltage and current are 90 degrees out of phase.
The product of voltage and current is positive for half a cycle and negative for the other half, hence
no net energy flows to the device (but energy is lost in the wiring). No practical devices are purely
reactive.

Most devices draw both real power and reactive power. Different devices draw different propor-
tions of real and reactive power. Hence, if we measure both real and reactive power then we can plot
devices on a two-dimensional plot like the one in figure 1.9. This powerful tool for distinguishing
between different devices lies at the heart of the “non-invasive load monitoring” (NILM) technique,
invented by George Hart, Ed Kern and Fred Schweppe of MIT in the early 1980s [38].

The NILM algorithm starts by detecting change in the measured parameters. These changes
represent transitions between nearly constant steady-state values. For example, consider a 500 watt
heater turning on and off. The real power reading will increase by 500 watts the moment the heater
turns on and will decrease by 500 watts the moment the heater turns off.

Changes with equal magnitudes and opposite signs are then paired. In our example, the +500 watt
event corresponding to the heater turning on would be paired to the -500 watt event corresponding
to the heater turning off and hence the NILM algorithm can deduce the length of time the device
has been active and the total energy consumption for each device. The technique is, apparently,
sufficiently sensitive to be able to distinguish between different 60 watt bulbs because one bulb

14

1.1. Background

might draw 61 watts while another draws 62 watts.

The original NILM algorithm (which has been successfully implemented commercially) consists
of the five steps outlined in algorithm 1.1.

Algorithm 1.1 The original NILM algorithm

1. An “edge detector” identifies changes in steady-state levels

2. Cluster analysis is performed to locate these changes in a two-dimensional signature space of
real and reactive power (figure 1.9).

3. Clusters of similar magnitude and opposite sign are paired. This catches simple, “two-state”
loads like heaters which can only be either on or off but fails to fully pair clusters attributable
to complex devices like dish washers which have many states.

4. Unmatched clusters are associated with existing or new clusters according to a best likelihood
algorithm. This step is known as anomaly resolution.

5. Events are assigned human-readable labels (e.g. “kettle” rather than “load#213”) by match-
ing events to a database of known device power consumption learned during a training phase.

Complex appliances like washing machines are modelled as finite state machines. A washer
typically has a heater and a motor which turn on and off in sequence. These are identified as a
cluster. The end result is that “washing machine” power consumption can be reported to the user
rather than “heater” and “motor” power consumption.

NILM may also make use of a database of existing device signatures in combination with a
pattern matching algorithm in order to classify devices.

The original NILM algorithm (algorithm 1.1) makes several assumptions. The first assumption
is that measurements of both real and reactive power are available. The second assumption is
that every appliance can be uniquely identified from its position in signature space. This second
assumption used to be valid for domestic situations and invalid for commercial situations. However,
with increasing numbers of devices in the home, the second assumption is becoming less valid for
the domestic situation too.

One challenge for the NILM algorithm is that several classes of device all include heaters (e.g.
kettles, washing machines, dish washers, tumble driers etc). These heaters tend to be hard or
impossible to distinguish in signature space. This is for two reasons. Firstly, heaters are the
archetypal “pure resistive load” so every heater draws 100 % real power and 0 % reactive power.
Secondly, heaters all tend to draw close to this maximum power available at the socket (for the
UK, this maximum is 13 amps × 230 volts = 3 kW).

For a recent review of NILM techniques, see [43].

Higher Harmonics and Electrical Noise

Many loads draw distorted currents due to their inherent physical characteristics (e.g. computers,
photo copiers etc). Shaw et al [59] sampled current waveforms at 8,000 Hz and then computed
spectral envelopes that summarize time-varying harmonic content. This provides further inform-
ation which, combined with the traditional NILM approach, can be used to distinguish devices.
This technique requires the use of specialised sampling hardware which is not readily available.

Froehlich et al [32] report disaggregation techniques which measure the very high frequency (10s
or 100s of kHz) noise produced by many appliances. Some devices produce a specific noise signature
at start up and some devices produce noise signatures during a continuous run (see figure 1.10).
Devices like computer power supplies and TVs produce an especially large amount of electrical
noise on the power line due, at least in part, to their “switch-mode” power supplies.

See [32] for a review of other “noise-based” disaggregation techniques.

15

1. Introduction

Figure 1.10.: Taken from Froehlich et al [32]. “(left) Transient voltage noise signatures of a light
switch being turned on. Colors indicate amplitude at each frequency. (right) Steady state
continuous voltage noise signatures of various devices during various periods of operation.”

Transient detection

Consider two different types of load: a washing machine’s motor accelerating from standstill to
full-speed and a large TV. Both loads might draw 200 watts when running. One difference between
them is that the washing machine motor controller gently accelerates the motor over 30 seconds
so the power consumption ramps from 0 watts to 200 watts over a 30 second period; whilst the
TV instantly draws 200 watts. The washing machine’s “transient” power ramp can be used as an
identifying feature.

Most loads observed in the field have repeatable transient profiles [47]. Disaggregation based on
recognition of transients permits near-real-time identification of devices. Transients in the aggregate
data are identified by comparing them to a set of exemplar transients learnt during a training phase.
Matching is performed using a least-mean-squares approach.

Sparse coding

Kolter, Batra & Ng [42] developed a novel extension to a machine learning technique known as
sparse coding to disaggregate home energy monitor data with a temporal resolution of only one
hour. Their method uses “structured prediction” to train sparse coding algorithms to maximise
disaggregation performance.

This approach builds upon sparse coding methods developed for single-channel source separation.
A sparse coding algorithm is used to learn a model of each device’s power consumption over a typical
week from a large corpus of training data. These learned models are combined to predict the power
consumption of devices in previously unseen homes. Given the very low temporal resolution of the
aggregate data, it is impressive that this technique achieves a test accuracy of 55 %.

Privacy concerns

George Hart, one of the developers of the “non-invasive load monitoring” technique, wrote an article
in the June 1989 IEEE Technology and Society magazine [38], in which he discussed the privacy
concerns about the NILM technique. He wrote:

“A key feature of this new technique is its nonintrusive nature. The device can
alternatively be installed on a utility pole at a distance from the site it is monitoring.
With this mounting scheme, not even a momentary loss of electrical service is necessary
for installation. From this unseen and unsuspected vantage point, the monitor has a
view deep into the workings of the residence. After observing the residence for a short
while, it generates a list of objects (appliances) and events (usages) that the occupants
may consider completely private.”

16

1.2. Broad aims and research direction

More recently, some consumers have have refused to allow utility companies to install smart meters
in their home, due to concerns about privacy and electromagnetic interference [30].

The Netherlands passed a law in 2007 requiring 100 % roll-out of smart meters by 2013. However,
this mandatory roll-out was suspended by parliament in July 2008 after increasing doubt about
privacy, security and efficiency [10].

1.2. Broad aims and research direction

As discussed above, disaggregating energy data is not a new idea. Indeed, disaggregation algorithms
have been successfully implemented commercially. However, these disaggregation algorithms usu-
ally require relatively sophisticated measurement hardware; hardware which is not currently readily
available for domestic users. The ultimate aim of this current project is to develop a computational
technique for disaggregating data from the most inexpensive and readily available form of smart
meter: the home energy monitor.

One disadvantage of using home energy monitors is that these meters only provide a single scalar
value, sampled at best once every six seconds and cannot measure the proportion of real versus
reactive power; nor can they measure harmonics or distorted current waveforms. As such, the
disaggregation techniques discussed above which rely on sophisticated measurement hardware are
not directly applicable to this project.

The “sparse coding” technique discussed above (which does work with home energy monitor
data) is not directly relevant either because that technique requires a large corpus of training data,
which we don’t have (although I did attempt to acquire such data).

The broad aim of this project is to produce an application which can deduce the start time,
duration and energy consumption of individual device activations given an aggregate signal output
by a home energy monitor. There does not appear to be an existing technique which is directly
applicable to the current project. Instead, existing disaggregation techniques will need to be dis-
assembled into their component parts and re-assembled into a system which can be applied to the
current project.

1.3. Dissertation outline

chapter 2 describes the choice and configuration of the two power meters used to gather data for
this project.

chapter 3 describes the prototype built to gain experience with the problem space. This prototype
uses a “least mean squares” approach to disaggregation. This prototype performs as expected:
it successfully locates a device signature within aggregate data but only if the device signature
is recorded simultaneously with the aggregate data. The lessons learnt from this prototype
are discussed.

chapter 4 describes a design for a fully functional disaggregation system. This system determines
a set of “power states” for a device by first creating a histogram of the raw signature. After
building and experimenting with an implementation of this design it became apparent that
a better design was achievable; the new design is described in chapter chapter 6.

chapter 5 describes a framework built to ease the production of graphs from C++ using the
command-line tool gnuplot.

chapter 6 describes the most recent design iteration. The design, implementation, testing and
performance of this design is described in detail. This design successfully disaggregates three
out of the four devices used during evaluation.

chapter 7 discusses conclusions, limitations, other applications of this work and further work.

17

1. Introduction

1.4. Terminology used in this report

kilowatt hour (kWh) The kilowatt hour is a measure of electrical energy. The kWh is probably
the most common unit for describing domestic energy consumption. When electrical utility compan-
ies refer to a “unit” of electricity, they mean the kWh. 1 kWh typically costs around 12.5 pence. The
average electricity consumption per household in the UK is ∼9 kWh per day = 3,300 kWh per year.
1 kWh≡ 3.6× 106Joules≡ 860 dietary calories≡ heat released by the combustion of ∼100g of coal.

Device signature This is the raw reading recorded by the meter which goes in between the device
and the wall socket. Device signatures are used to train our disaggregation system. An example is
shown in the bottom panel of figure 1.11.

Device fingerprint This is the device’s “fingerprint” in the aggregate data. An example is shown
in the top panel of figure 1.11. It is the result of the device’s signature summed with an unknown
number of unknown devices. The ultimate aim of this project is to confidently detect device
fingerprints in noisy aggregate data.

0

1

2

3

4

5

6

whole-house aggregate power consumption

p
ow

er
(k

W
)

0

1

2

11:45 12:00 12:15 12:30 12:45 13:00 13:15 13:30

time

washing machine signature

p
ow

er
(k

W
)

Figure 1.11.: The top panel shows whole-house aggregate power consumption. The bottom
panel shows the power consumption of just the washing machine. The data in the two panels
was recorded simultaneously. The effect of the washing machine on the aggregate power
consumption is what we will call the “fingerprint” of the washing machine.

18

2. Setting up the measurement and logging
equipment

This project requires two power meters: one for recording power consumption from a single device
and one for recording whole-house aggregate power consumption.

2.1. Recording whole-house aggregate power consumption

Figure 2.1.: The Current Cost clamp
installed in our home.

There are several home energy monitors available for around
£40-£80 (and some electricity utility companies give them
away for free). Home energy monitors are primarily designed
to display live energy consumption to the user but our project
requires that the aggregate data be logged for subsequent
analysis. Two different brands of meter were evaluated for
use in the current project: an AlertMe (borrowed) and a
Current Cost EnviR (my own).

A unique feature of the AlertMe is that it does not
have a hardware display1: instead it transmits data live
to AlertMe’s website. Users view their power consumption
through AlertMe website. Software developers can access
their own smart meter data through AlertMe’s API2. Unfor-
tunately the AlertMe did not function reliably (perhaps it
was a faulty unit) so an alternative meter was acquired.

The Current Cost meter is popular with those who like to log energy consumption on a computer.
For example, over 50 IBM staff members currently log their home energy consumption using Current
Cost monitors3. It has a USB port which allows easy access to live data from a computer. The
Current Cost has two main components: a clamp sensor (figure 2.1) and a display unit. The sensor
sends data wirelessly to the display. The display has a basic internal logging facility but, crucially, it
does not store high temporal resolution data. This project requires the highest temporal resolution
data available from the Current Cost (1 sample every 6 seconds) which is produced by the Current
Cost but is not logged. So a laptop was dug out from the loft to take responsibility for reading
live data from the Current Cost. A simple perl logging script was written4 to log two parameters:
UNIX timestamp and power (in watts). The end result is a log of aggregate energy consumption
with a temporal resolution of 1 sample every 6 seconds and a measurement resolution of 1 watt.
An example aggregate data plot is shown in figure 2.2.

The reliability of the wireless connection between the sensor and the display proved to decrease
as the distance between the two units increased so the sensor, display and laptop were located
together, next to the fuse box.

1The AlertMe I borrowed did not have a display device but, within the last month, AlertMe started selling a display
device.

2alertme.com/business/platform.html
3realtime.ngi.ibm.com/currentcost
4My Perl script is on github at github.com/JackKelly/CurrentCostLogger. It is based on Paul Mutton’s ex-

cellent tutorial available at jibble.org/currentcost with modifications from Jamie Bennett’s blog available at
linuxuk.org/2008/12/currentcost-and-ubuntu

19

http://www.alertme.com/business/platform.html
https://www.alertme.com/node/1620
https://www.alertme.com/node/1620
http://www.alertme.com/business/platform.html
http://realtime.ngi.ibm.com/currentcost
https://github.com/JackKelly/CurrentCostLogger
http://www.jibble.org/currentcost
http://www.linuxuk.org/2008/12/currentcost-and-ubuntu

2. Setting up the measurement and logging equipment

0

2

4

00 06 12 18 00

p
ow

er
(k

W
)

hour

Figure 2.2.: Example aggregate data recorded over a 24-hour period by the Current Cost.

2.2. Recording device signatures

Figure 2.3.: The WattsUp monitor.
(Photo taken from
lakerenergymatters.blogspot.com)

The single-appliance meter used for this project is a
“WattsUp” meter (which was kindly lent to me by my
supervisor, Dr Knottenbelt). This plugs into the wall
socket. The device under test plugs into the WattsUp.
The WattsUp records a sample once a second for up to 6
hours (it has 2 MBytes of internal memory). The Watt-
sUp log includes the following information:

• power (in steps of 0.1 Watts)

• current

• voltage

• power factor

Data are downloaded from the WattsUp to a computer via
USB using a Windows utility which outputs a CSV file.
The CSV file is loaded into LibreOffice Calc to remove all
columns except the “watts” column. This single-column
data is now ready for use. An example signature recorded
by the WattsUp is shown in figure 2.4.

0

1

2

00:00 00:30 01:00

p
ow

er
(k

W
)

hours:minutes

Figure 2.4.: Example washing machine signature recorded by the WattsUp. The 2.3 kW spikes
are the water heater. The 200 watt section at 1:15 is the fast spin.

20

http://lakerenergymatters.blogspot.com/2010/11/watts-up.html

3. Early prototype

In order to get a feel for the task, we first set a goal to build a deliberately over-simplified prototype
designed to automatically align data recorded simultaneously by the WattsUp and the Current Cost.
The challenge is illustrated in figure 3.1.

0

1

2

3

whole-house aggregate power consumption

p
ow

er
(k

W
)

0

1

2

3

11:00 12:00 13:00 14:00 15:00 16:00 17:00

time

individual device power consumption

p
ow

er
(k

W
)

kettle

toaster

washing machine tumble drier

Figure 3.1.: Aggregate data aligned with individual device signatures. The top panel shows
whole-house aggregate power consumption recorded by the Current Cost. The lower panel shows
the individual power consumption of four devices. The data in the top and bottom panels were
recorded simultaneously.

3.1. Prototype version 1

The algorithm takes an unsophisticated, brute-force approach to the disaggregation problem. Start-
ing at the beginning of the aggregate data, we calculate a mean-squared error value for the match
between the device signature and the first stretch of aggregate data. Then shift one step forward
in the aggregate data and calculate a new mean-squared error value. Continue until we get to the
end of the aggregate data. Finally, report the position which produced the smallest error value (see
algorithm 3.1). This algorithm was tested by creating a cropped copy of a device signature and
then asking the algorithm to locate the cropped signature within the original, uncropped signature
(which worked perfectly).

The algorithm was then tested against the data used to produce figure 3.1 (i.e. 24 hours of
aggregate data plus device signatures recorded in that same 24 hour period for the kettle, toaster,

21

3. Early prototype

Algorithm 3.1 Using Least Mean Squares to locate signature within aggregateData. Recall that
the aggregate data is sampled once every 6 seconds whilst the signature data is sampled once a
second; hence the “6” in the meanSquaredError calculation.

LOCATE(aggregateData, signature) Returns index in aggregateData at which signature starts

Let ai be the ith sample in the aggregateData
Let si be the ith sample in the signature
Let minErrors← infinity
Let location← −1
for all ai ∈ aggregateData do

meanSquaredError←
(∑signatureLength÷6

j=0 (ai+j − sj×6)
2
)
÷ (signatureLength÷ 6)

if meanSquaredError < minError then
minError← meanSquaredError
location← i

end if
end for
return location

washing machine and tumble dryer). This first prototype gave nonsense answers for every device!

3.2. Prototype v2: compensating for dropped measurements

The Current Cost home energy monitor occasionally fails to detect a reading sent over the air
from the clamp meter. Perhaps the algorithm described above failed because it assumes that every
sample in the aggregate data has been recorded exactly 6 seconds apart. If this assumption is false
then even if the beginning of the WattsUp data is aligned perfectly with the Current Cost data, the
two will drift out of sync because there are missing samples in the Current Cost data. Examining
the data logs it appears that the Current Cost drops 10 % of the readings sent to it and that not
all readings are taken exactly 6 seconds apart.

Prototype version 2 no longer assumes that consecutive aggregate data samples are exactly 6
seconds apart. Instead, it reads the timestamp of each aggregate data sample and compares this
to the correct WattsUp sample. For example, if the aggregate data contains consecutive samples
taken at 0, 6, 13 and 25 seconds then version 2 of the algorithm compares these with WattsUp
samples 0, 6, 13 and 25, whereas version 1 of the algorithm would have used WattsUp samples 0,
6, 12 and 18.

Version 2 located the tumble drier perfectly but still gave nonsense answers when asked to locate
the washing machine, toaster or kettle.

3.3. Prototype v3: offsetting & compensating for sample-rate
mismatch

3.3.1. Offsetting

A typical home continues to consume several hundred watts even when the occupants believe that
“everything is off”. This “vampire power” can largely be attributed to devices which continue to
draw power in standby mode and by devices which are permanently on (the alarm system, cordless
phone base stations, the fridge etc.). Previous versions of the prototype compare the WattsUp
device signature against an aggregate signal which is always several hundred watts above zero, and
this baseline moves up and down as devices around the house change state. The prototype was
modified in an attempt to compensate for this moving baseline. When it starts calculating the
mean-squared error at each position in the aggregate data, the new version starts by calculating
the mean of the first 50 samples of the aggregate data and subsequently using this mean as an

22

3.4. Further experiments: finally achieving automated alignment of all devices

0

800

0 30 60 90 120

p
ow

er
(w

a
tt

s)

time (seconds)

Figure 3.2.: Toaster raw signature with only a single zero at the start and end

“offset”. The algorithm takes this offset into account when calculating the mean-squared for the
whole WattsUp signature.

3.3.2. Sample-rate mismatch

The WattsUp records a sample exactly once per second but the Current Cost records an instant-
aneous sample roughly every 6 seconds. Previous versions of the prototype handled this mismatch
by simply throwing away 5 out of every 6 WattsUp samples. This is fine for events which have a
period of 12 seconds or longer but the washing machine and tumble drier signatures contain features
which are considerably shorter than 12 seconds. The prototype was modified to better utilise all
the information available in the WattsUp signature by comparing every Current Cost sample to
the 6 nearest WattsUp samples.

3.3.3. Accuracy of prototype v3

Prototype 3 performs no more accurately than prototype 2 (i.e. it reliably locates the tumble drier
but still produces garbage answers for the washing machine, toaster and kettle). Prototype 3 also
runs 6 times slower than prototype 2!

3.4. Further experiments: finally achieving automated alignment of all
devices

3.4.1. Kettle and toaster

The code automatically removes leading and trailing zeros from each signature so the signature
after preprocessing has only a single zero at the front and back. This means that the toaster
signature starts immediately with a rapid transition lasting 2 seconds from 0 to 800 watts and ends
with a rapid transition from 800 to 0 watts (figure 3.2). It would be all to easy for the algorithm
to miss the start and end transitions for the toaster and kettle, especially given the sample rate
mismatch between the WattsUp and Current Cost. So 50 zeros were added to the start and end of
each signature and then the prototype was able to successfully locate the kettle and toaster! But
how can we get a lock on the washing machine fingerprint?

3.4.2. Washing machine

Looking more closely at the aggregate data during the time when the washing machine was on,
it is clear that several unknown, power-hungry devices change state whilst the washing machine
is running (figure 3.3). For example, at around 11:44 a ∼3 kW device turns on for a minute; at
around 12:10 a ∼200 W device turns off (the fridge’s compressor, maybe?); and at around 13:20,
a ∼1 kW device turns on. This “background noise” means that when the algorithm stumbles
upon the correct alignment it will calculate an unfavourable mean-squared error value because the

23

3. Early prototype

0

1

2

3

4

5

6

whole-house aggregate power consumption
p

ow
er

(k
W

)

0

1

2

11:45 12:00 12:15 12:30 12:45 13:00 13:15 13:30

time

washing machine signature

p
ow

er
(k

W
)

Figure 3.3.: Zoomed into washing machine aligned with aggregate data. The top panel shows the

whole-house aggregate power consumption. The bottom panel shows the washing machine signature.

The data for the two panels was recorded simultaneously.

algorithm assumes that the baseline does not change over the course of the device’s run. To put
this another way: the least mean squares algorithm will only calculate a favourable error score over
short stretches of the washing machine signature, not over the entire 2 hour run. (This issue is
discussed further in section 6.1).

To test this hypothesis, the washing machine signature was cropped to just the data from 12:30
to 13:00 (because there do not appear to be any large, unknown devices changing state during
this period in the aggregate data). The algorithm correctly located this cropped signature in the
aggregate data.

3.5. Failure to generalise

So, the least mean squares algorithm can successfully find all four devices in the aggregate data.
Does this mean that the project is finished? Does this least mean squares algorithm successfully
find all instances of the washing machine in the aggregate data from only a single training example?

To find out, a second washing machine signature was recorded and the prototype attempted
to find this new signature within the old aggregate signal (i.e. the signature and the aggregate
signal were recorded at separate times). The system failed to locate the new signature, even when
cropped.

Thus, as expected, this simplistic approach works only if the aggregate data and signature data
are recorded simultaneously. A more sophisticated approach will be required in order to locate
device fingerprints in aggregate data recorded at a different time to the signature.

24

3.6. Prototype summary: lessons and limitations

3.6. Prototype summary: lessons and limitations

1. It is necessary to explicitly take into consideration the fact that the Current Cost drops 10 %
of its samples.

2. A device is very unlikely to produce exactly the same signature twice. Hence trying to locate
waveforms is unlikely to succeed.

3. It probably makes more sense to think in terms of locating state transitions rather than
locating entire waveforms.

The main limitations of the prototype stem from the over-simplistic assumptions; namely:

1. The prototype assumes that the signatures were recorded at the same time as the aggregate
data. Whilst this was an interesting experiment, this assumption is clearly not viable for a
production system.

25

4. First design: histograms and power states

4.1. Aims

The user will train the system to recognise a device by providing a signature file for that device.
During disaggregation, the system must locate every occurrence of that device within an aggregate
signal. The aggregate signal will be recorded at a different time to the signature. Training may
require limited human intervention but disaggregation should be completely automated.

4.2. Broad design principals

We learnt in the previous chapter than we cannot rely on simple pattern-matching of the signature
waveform against the aggregate signal so we need to abstract from the signature to a representation
which is sufficiently general to allow for routine variation in device behaviour but also sufficiently
descriptive to allow us to discriminate different appliances. This representation should be loosely
based on the physical characteristics of the world we’re attempting to model.

4.3. Which programming language?

This project requires a language which is efficient, object orientated and has a large existing library
of signal processing tools. This set of requirements pointed towards C++ with help from the
Standard Template Library and the Boost library.

Matlab was considered as a prototyping platform but was dismissed because, frankly, I wanted
this project to provide an intensive C++ education (which it certainly did).

4.4. Training strategy

The strategy, per appliance, is:

1. Record a raw log of the energy consumption of each device using the WattsUp meter.

2. Extract and store two abstractions from the raw log (this should be automated as much as
possible but may require human intervention at some stages):

a) Let’s assume that a device’s power consumption tells us something useful about the
internal state of the device. The first task is to determine a set of “power states”. For
example, a kettle would have two “power states”: off (0 W) and on (2.7 kW). On the
other hand, a washing machine is likely to have many power states like water heater
on (2.3 kW), slow spin (100 W), fast spin (300 W) and anti-crease (alternating between
0 W and 50 W).

b) Once the set of “power states” are established, determine the sequence in which the
power states occur in this raw power log. For a kettle, this sequence would simply
be “power state on lasts for 60 seconds”. For a washing machine, this sequence might
be “first spin gently for 5 minutes, then heat water for 1 minute, then spin gently for
an hour, then spin quickly.” Locate any repeating sub-sections of the sequence and
encode the range of permissible repeats. Encode the likelihood, given previous states,
of a state change happening at a particular time (represented perhaps as a probability
density function). For example, the fridge’s compressor continuously cycles between on
for about 5 minutes and off for about 10 minutes. We know it’s extremely unlikely for

27

4. First design: histograms and power states

Device
name: string
Device(name)
void getReadingFromCSV(file...)
list<size_t> findAlignment(aggData)
list<size_t> getStartTimes(aggData)
void updatePowerStates()
void updatePowerStateSequence()
void loadCurrentCostData(fs, aggData)
double LMS(agOffset, aggData, sig)

Array
data: T*
size: size_t
smoothing: size_t
upstreamSmoothing: size_t
Array()
Array(size)
Array(size, data)
Array(otherArray)
Array<T>& operator=(other)
T& operator[](i)
const T& operator[](i)
bool operator==(other)
void setSize(size)
void setAllEntriesTo(x)
void rollingAv(dest, length)
T rollingAv(i, length)
size_t max(T* max, start, end)
size_t max(T* max, list<size_t>& mask)
void descendPeak(peak, start, end)
void findPeaks(list<size_t>* boundaries)
void copyCrop(source, cropFront, cropBack)
void dumpToFile(filename)
void loadData(filestream)
void drawGraph(details, xlabel, ylabel, args)
size_t getNumLeadingZeros()
size_t getNumTrailingZeros()

T

AggregateSample
timestamp: size_t
reading: size_t

AggregateData
samplePeriod: size_t
aggDataFilename: string
void loadCurrentCostData(filename)
size_t findNear(i, expDist, delta)
size_t findTime(time)
size_t secondsSinceFirstSample(i)
size_t checkStartAndEndTimes(start,end)

Signature
samplePeriod: size_t
sigID: size_t
list<PowerState> getPowerStates()
PowerStateSequence& getPowerStateSequence()
void downSample(output*, newPeriod)
void drawHistWithStateBars(hist)
void drawGraph(details)
void updatePowerStates()
list<PowerState>::iterator getPowerState(s)
string getStateBarsBaseFilename()
void fillGapsInPowerStates(hist)
void updatePowerStateSequence()Statistic

mean: double
stdev: double
min: T
max: T
numDataPoints: size_t
Statistic()
Statistic(histogram, start, end)
void outputStateBarsLine(o)

T

Histogram
sizeOfSource: size_t
Histogram(source, xaxis)
void drawGraph()
string getBaseFilename()

Utils (namespace)

int roundToNearestInt(double)
size_t roundToNearestSizeT(size_t)
char* todaysDateAndTime()
string size_t_to_string(size_t)
void openFile(fs, filename, openmode)
size_t countDataPoints(fs)
bool roughlyEqual(double a, double b, tolerance)
double highest(double a, double b)
double lowest(size_t a, size_t b)
bool within(double a, double b, diff)
bool between(bound1, bound2, x)
string secondsToTime(seconds)
bool sameSign(double a, double b)
void fatalError(message)

std::list
elements

T

PowerStateSequence
deviceName: string
void dumpToFile(details)
void setDeviceName(deviceName)
void plotGraph()
string getBaseFilename()

PowerStatePowerStateSequenceItem
startTime: size_t
endTime: size_t
delta: Sample_t

<AggregateSample>

<Sample_t>

<Histogram_t>

<PowerStateSequenceItem>

<Sample_t>

1..*

1

1

1

1..* 11 1

1..*

1

1
1

Figure 4.1.: UML Diagram. Sample t and Histogram t are both typedefs for a double

(typedefs were used to allow other basic types to be used as the “sample type” and “histogram
type” if required). Utils is not a class, it is a namespace containing useful utilities which do not
belong in specific classes.

28

4.5. Disaggregation strategy

the compressor to come on only 10 seconds after turning off but we also know that it may
come on after only 5 minutes if the fridge has just been filled with room-temperature
food.

3. We’ll use the transitions between states to identify each device in the aggregate signal so
we need to score each power state transition for its expected usefulness as an identifying
characteristic. For example, a transition from a 20 W state lasting 1 second to a 25 W state
lasting 2 seconds will be fairly useless as an identifying characteristic because it will easily be
missed. Far better would be a transition from a 100 W state lasting 1 minute to a 2000 W
state lasting 5 minutes. Basically: we’re looking for state transitions which will stand out
from the noise in the aggregate data.

4.5. Disaggregation strategy

For each device (using a washing machine as a concrete example):

Select the top scored transition between states. For example, the top scored transition between
states for the washing machine might be the transition from slow spin at 100 W to heat water at
2.7 kW. Search through the aggregate data for a 2.6 kW jump. When a 2.6 kW jump has been
found, return to the power state sequence and select the second highest ranked transition between
states and try to find it in the aggregate data, whilst taking into consideration the expected length
of time between the highest ranked transition between states and the second highest ranked. For
the washing machine, the second highest ranked state transition might be the transition from heat
water back to slow spin, which is expected about 5 minutes after the transition from slow spin
to heat water. Continue searching for salient transitions between states until we can be confident
beyond reasonable doubt that we have located the device in question.

4.6. Implementation

4.6.1. Doxygen HTML code documentation

Before we discuss the implementation details, please note that the code documentation is available
at www.doc.ic.ac.uk/∼dk3810/disaggregate. This HTML documentation was automatically gen-
erated from the code using the documentation tool Doxygen1. The HTML documentation lists all
the classes and, for each class, lists each member function and member variable, along with many of
the comments from the code. Some information is presented graphically including class inheritance
diagrams, collaboration diagrams, caller and call graphs.

4.6.2. Extracting a set of power states from the raw signature

The following strategy has been implemented to extract a set of power states from a raw signature
(figure 4.2 shows an example output from the code): first we create a histogram of the raw signature
by passing a Signature object to the Histogram constructor, then we identify the largest peaks
in the histogram using findPeaks() and then we record a set of statistics for each of these peaks
(min, mean, max, stdev) using the Statistic constructor.

The Array::findPeaks() function

findPeaks() attempts to find “peaks” in a histogram (see figure 4.2). The basic strategy can
be visualised as a blind but intrepid hill-climber travelling across an uncharted mountain range:
at every point the walker can feel in her legs whether she is ascending, travelling along a flat or
descending. She can infer that she has recently passed a peak if she ascends, then travels along a
flat and then descends.

1doxygen.org

29

http://www.doc.ic.ac.uk/~dk3810/disaggregate
http://doxygen.org
http://doxygen.org

4. First design: histograms and power states

-20

0

20

40

60

80

0 50 100 150 200 250

2750

2760

2200 2250 2300 2350

-2

0

2

4

6

8

G
ra

d
ie

n
t

o
f

h
is

to
gr

am

H
is

to
gr

am
fr

eq
u

en
cy

Power (Watts)

histogram
31-step rolling average of histogram gradient

automatically determined state boundaries (min, mean, max)

Figure 4.2.: Automatically determined power states from a signature histogram for a washing machine.

The red solid line shows a histogram of washing machine data (unsmoothed). Automatically determined

state boundaries are shown in black. The state at around 100 W is the slow spin during the main

washing cycle; the state around 240 W is the fast spin at the end of the cycle and the state at 2310 W is

the water heater (the washer only has a cold water input so it must heat the water itself). After creating

the histogram, the findPeaks() function works through the histogram from the furthest right. It

determines the gradient of each point on the histogram, takes a rolling average of this gradient (shown in

dashed blue) and then uses this smoothed gradient to automatically find state boundaries.

In a similar fashion, findPeaks() “senses” the gradient underfoot by calculating the gradient
at every point on the histogram and then smoothing this gradient. findPeaks() works backwards
through the histogram (i.e. starts at the furthest right and travels left) because the algorithm
assumes that we always start on a flat gradient. We can be confident that the very end of the
histogram will always have a frequency of zero because the furthest right of the histogram records
the frequency of samples with a value of 3,500 Watts, but no domestic device can draw above
3,000 Watts.

The code labels the flat sections between peaks as “no mans’ land”. The constant
KNEE GRAD THRESHOLD defines the gradient threshold which delineates the transition from “no mans’
land” to ascent (i.e. the “knee” of the ascent curve); and the constant SHOULDER GRAD THRESHOLD

defines the gradient threshold which delineates the transition from ascent to a flat gradient (i.e.
the “shoulder” of the ascent curve). The function findPeaks() returns a list of indices bounding
the start and finish of each peak.

The C++ code for findPeaks() follows:

l i s t Array : : f indPeaks () {
l i s t <s i z e t > boundar ies ; // what we return
const double KNEE GRAD THRESHOLD = 0 .000 14 ;
const double SHOULDER GRAD THRESHOLD = 0 .00 014 ;
enum { NO MANS LAND, ASCENDING, PEAK, DESCENDING, UNSURE } s t a t e ;

30

4.6. Implementation

s t a t e = NO MANS LAND;
double kneeHeight =0, peakHeight =0, descent =0, ascent =0;
// Construct array o f g r a d i e n t s
Array<Sample t> grad i en t ;
getDe l ta (&gradient , −1) ;
// Construct an array o f smoothed g r a d i e n t s
Array<Sample t> smoothedGrad ; // re turn parameter f o r ro l l i ngAv
grad i ent . r o l l i ngAv (&smoothedGrad) ;
// s t a r t at the end o f the array , working backwards .
for (s i z e t i =(s i z e−HIST GRADIENT RA LENGTH) ; i >0; i−−) {

switch (s t a t e) {
case NO MANS LAND:

i f (smoothedGrad [i] > KNEE GRAD THRESHOLD) {
/∗ when the grad i en t goes over a c e r t a i n thresho ld ,
∗ mark that as ASCENDING,
∗ and record index in ’ boundar ies ’ and kneeHeight ∗/

s t a t e=ASCENDING;
boundar ies . push f ront (i) ;
kneeHeight = data [i] ;

}
break ;

case ASCENDING:
// when grad i en t i s around 0 then s t a t e = PEAK and record peakHeight
i f (smoothedGrad [i] < SHOULDER GRAD THRESHOLD) {

s t a t e=PEAK;
peakHeight = data [i] ;
a scent = peakHeight − kneeHeight ;

}
break ;

case PEAK:
// when grad i en t goes below a c e r t a i n thresho ld , s t a t e = DESCENDING
i f (smoothedGrad [i] < −SHOULDER GRAD THRESHOLD) {

s t a t e=DESCENDING;
}
i f (data [i] == 0) {

s t a t e=NO MANS LAND;
boundar ies . push f ront (i) ;

}
break ;

case DESCENDING:
/∗ when grad i en t goes to 0 , check he ight .
∗ I f we ’ ve descended l e s s than 30% our ascent he ight then
∗ don ’ t mark in ’ boundar ies ’ , i n s t ead re−mark as ASCENDING
∗ e l s e mark in ’ boundar ies ’ and s t a t e=NO MANS LAND ∗/

i f (smoothedGrad [i] > −KNEE GRAD THRESHOLD | | data [i]==0) {
// check how f a r we ’ ve descended from the shou lder
descent = peakHeight − data [i] ;
i f (descent < (0 . 3 ∗ ascent)) {

s t a t e=UNSURE;
} else {

s t a t e=NO MANS LAND;
boundar ies . push f ront (i) ;

}

31

4. First design: histograms and power states

}
break ;

case UNSURE:
// We were descending but h i t a p lateau prematurely .
// Find out i f we ’ re descending or ascending
i f (smoothedGrad [i] < −SHOULDER GRAD THRESHOLD) {

s t a t e = DESCENDING;
} else i f (smoothedGrad [i] > KNEE GRAD THRESHOLD) {

s t a t e = ASCENDING;
} else i f (data [i]==0) {

s t a t e=NO MANS LAND;
boundar ies . push f ront (i) ;

}
break ;

} ; // end switch
} // end f o r
i f (s t a t e != NO MANS LAND) {

boundar ies . push f ront (0) ;
}
return boundaires ;

}

The Array::rollingAv() function

The Array::rollingAv(Array* output, const size t length) function smooths an Array

object by taking a rolling average of specified length (figure 4.3). Parameter “output” is the
returned smoothed Array object.

0

500

1000

1500

2000

2500

0 1000 2000 3000 4000 5000

p
ow

er
(W

at
ts

)

time (seconds)

raw data
31-step rolling average of washing machine data

Figure 4.3.: Raw and smoothed data

Why does rollingAv() return its output in the form of an Array* output parameter instead of
returning an Array object? Consider an alternative function which returns an Array object. The
function would start by creating a local Array object, populating this object and then returning
a copy of this object. It is this inefficient copying that we wish to avoid. So we let rollingAv’s
caller statically declare an Array object and pass this object to rollingAv() to populate it. We
pass in an Array* instead of an Array& purely as a cosmetic style convention suggested by Bjarne
Stroustrup [63] so that rollingAv is always called like this: “array.rollingAv(&rollingav)”;

32

4.6. Implementation

0

500

1000

1500

2000

2500

0 1000 2000 3000 4000 5000

p
ow

er
(W

at
ts

)

time (seconds)

31-step rolling average of washing machine data
automatically determined state sequence

Figure 4.4.: Automatically determined power state sequence for a washing machine (please note that

these power states do not correspond to those in figure 4.2) The height of the state boxes indicates the

min and max values for that power state.

the ampersand reminds us that rollingav will be modified. A third option would have been to
dynamically create a new Array object at the start of the rollingAv function and to return a
pointer to this object. The problem with this strategy is that this shifts responsibility for deleting
the object onto the caller function which is risky2.

I experimented with smoothing the raw signature prior to creating a histogram but this approach
is unlikely to be statistically valid and also doesn’t appear to improve performance. The histogram
is not binned. Binning might be an alternative to smoothing.

4.6.3. Extracting a power state sequence

A simple strategy to extract a power state sequence has been implemented. The code simply runs
through the raw signature and, for each sample, tests whether this sample falls within the bounds
of any power state. An example output of my code is given in figure 4.4. At the moment, the
“power state bounds” are defined as the minimum and maximums, although it may be better to
use one stdev above and below the mean.

4.6.4. Data output

The “histogram” design can be invoked at the command line by supplying disaggregate with the
--histogram switch (see the software user guide in appendix A for more details). For example the
command “./disaggregate --histogram -s washer.csv -n "washer"” will create a histogram
for the washer signature, infer a set of power states and infer a power state sequence. The following
graphs are output to the data/output path:

washer-afterCropping.svg The raw signature file.

washer-hist-UpstreamSmoothing1.svg The histogram. (The “UpstreamSmoothing1” simply says
that the signature was not smoothed prior to creating the histogram)

2This paragraph describes my thought process while I was writing this code over a month ago. I now know the
situation is more nuanced for at least two reasons: firstly, perhaps a std::auto ptr could have been used to return
a pointer to a dynamically assigned Array object (thereby implementing the Resource Acquisition Is Initialisation
(RAII) programming idiom). Secondly, both GCC and MSVC compilers implement “return value optimisation”
hence code which returns a copy of a temporary object should be optimised such that the temporary object is
simply returned, rather than copied, especially in C++0x [23].

33

4. First design: histograms and power states

washer-histWithStateBars.svg The histogram overlayed with the histogram gradient and the in-
ferred power states (similar to the graph show in figure 4.2).

washer-powerStateSequence.svg The power state sequence (similar to the graph shown in figure
4.4).

4.7. Flaws in the “histogram” design

After implementing the code to determine a set of power states and a power state sequence, it be-
came apparent that this design approach was not optimal for a number of reasons. One reason was
that the behaviour of the function Array::findPeaks (which aims to find “peaks” in signature his-
tograms) changed dramatically if the constants KNEE GRAD THRESHOLD and SHOULDER GRAD THERSHOLD

were altered by small amounts. Even more worryingly, parameters which work well for one signature
do not work well for other signatures. This made the code feel very “fragile”. Other serious flaws
of the “histogram” design approach will be discussed in chapter 6 which describes an alternative
and superior design.

34

5. gnuplot template instantiation system

This project is, at its heart, a signal processing project. As development progressed, it became
clear that an essential requirement for efficient development is to be able to visualise data as it
flows through the code. In the early stages of the project, data were output from the code as text
files and plotted using Matlab or LibreOffice Calc1. It quickly became apparent that this relatively
labour intensive approach to plotting was a development bottleneck and so a new plotting system
was required with the following characteristics:

1. Fully automated generation of plots directly from the code.

2. Customisable plots

3. Easy integration with C++

gnuplot2 is a free, open source command-line graphing utility. It is tremendously powerful and
offers a lot of control. gnuplot takes two basic forms of input: a script file and (at least one) data
file. For example, a simple script to plot a device signature as an svg image file might look like
this:

set terminal svg s ize 1200 800 ; set samples 1001
set output ” data / output /washer . svg ”
set t i t l e ”washer s i g n a t u r e ”
set xlabel ” time (seconds) ”
set ylabel ”power (watts) ”
plot ”washer . dat” with l i n e s l i n ew id th 1

gnuplot certainly has the capacity to draw every type of plot this project requires (and all the
plots in this report were produced with gnuplot). It is trivial to design the C++ code to output
numeric data to a text file. But how can the code automatically produce bespoke gnuplot scripts
and call gnuplot to render the plot?

The first solution was to simply use the popen() UNIX system call. popen() initiates a pipe
stream to an executable and allows that stream to be written to like a normal file:

FILE∗ gnuplotp ipe = popen (” gnuplot ” , ”w”) ;
// gnuplot i s now running and ready to accept commands . We
// send commands to ’ gnuplotp ipe ’ as i f i t were a normal FILE∗
f p r i n t f (gnuplotpipe , ” p l o t \” washer . dat \” with l i n e s l i n ew id th 3\n”

” e x i t \n”) ;
p c l o s e (gnuplotp ipe) ;

This was fine for simple gnuplot scripts but became unmanageable for larger scripts (some
gnuplot scripts in this project are over 170 lines long; far too much to hard-code into a C++
file).

The solution was to build a simple template instantiation system. A template file might look like
this:

set t i t l e ”TITLE”
set xlabel ”XLABEL”
set ylabel ”YLABEL”
plot ”DATAFILE” with l i n e s l i n ew id th 1 t i t l e ”DATAKEY”

1libreoffice.org/features/calc
2gnuplot.info

35

http://www.libreoffice.org/features/calc
http://www.gnuplot.info/
http://www.libreoffice.org/features/calc
http://www.gnuplot.info/

5. gnuplot template instantiation system

GNUplot (namespace)

void plot(PlotVars)
void sanitise(PlotVars*)
void sanitise(string*)
void sanitise(list< PlotData >*)
void instantiateTemplate(PlotVars)

PlotVars
inFilename: string
outFilename: string
title: string
xlabel: string
ylabel: string
plotArgs: string
data: list< PlotData >

PlotData
dataFile: string
title: string
tokenBase: string
useDefaults: bool

Figure 5.1.: The GNUplot namespace. GNUplot::PlotVars and GNUplot::PlotData are structs.

The template instantiation system replaces the tokens TITLE, XLABEL, YLABEL, DATAFILE and
DATAKEY in the template file with whatever string might be appropriate for the current graph. The
instantiated template is then sent to gnuplot. This template system has several attractive features:

• maximises reuse of gnuplot code

• gnuplot templates can be debugged more easily than hard-coded gnuplot scripts

• gnuplot commands can be altered by the user without having to recompile the C++ code

5.1. Implementation

The gnuplot template instantiation code lives in a separate “GNUplot” namespace (see figure 5.1)
instead of a class because the gnuplot code does not need to store any state information. Template
tokens are replaced by the UNIX text-processing utility sed (which is called from C++ using the
system() function).

If a signal processing function wishes to produce a plot then it first must create a GNUplot::PlotVars

struct containing the relevant details (see figure 5.1). This struct is then passed by reference to
GNUplot::plot(). The first thing plot() does is to “sanitise” the strings by replacing any charac-
ters which may confuse either sed or gnuplot. plot() then instantiates a gnuplot template using
instantiateTemplate().

Template files are stored in the config/ directory. For maximum flexibility, there are two pos-
sible templates for each plot: a general template and a template specific to that device. This is
useful because, for example, plotting a histogram for a washer may require broken axes whilst a
histogram for a kettle may not; hence it is useful to allow a specific template to be specified for
washer histograms. Consider a situation which requires a plot of a histogram for a washer device.
instantiateTemplate() first looks for a template with the name “washer-histogram.template.gnu”.
If (and only if) this file is not found then the template file “histogram.template.gnu” is used
instead.

5.1.1. gnuplot output

gnuplot’s output format is configured using the “set terminal” command. For example, if we
want gnuplot to output svg plots then we use “set terminal svg” but if we want plots suitable
for inclusion in a LATEX report then we use “set terminal epslatex”. The “set terminal”
command is not hard-coded into each template; instead it is added at runtime. This means that
only a single line needs to be changed in order to change every plot from svg to LATEX format.

Output files are saved to the data/output/ directory. Three files are saved for each plot:

.dat The raw data file.

.gnu The gnuplot script generated by instantiating the relevant template file.

.svg / .eps The image file containing the plot.

36

5.2. Limitations and future work

5.2. Limitations and future work

Using the UNIX text-processing utility sed for token replacement ties this implementation to the
UNIX platform (because sed is not available on some platforms). An improvement would be to
use the Boost C++ String Algorithms Library to do the token replacement instead of sed.

37

6. Final design iteration: graphs and spikes

6.1. Introduction

As work progressed on the previous design, it became clear that it would fail to take full advantage
of two key features of the disaggregation problem. In the following we present some background
before discussing these two features in detail.

As discussed in section 3.4.2, the “least mean squares” approach to matching the washing ma-
chine’s signature against its fingerprint in the aggregate data fails because unknown devices change
state over the course of the washing machine’s fingerprint which significantly distorts the finger-
print (see figure 6.1 panels a-c). Hence we cannot rely on the absolute value of the aggregate signal
because the baseline constantly moves underneath us.

Given that we cannot rely on the absolute value, can we rely on the rate of change? Figure 6.1
panels d and e show ∆aggregate and ∆signature, respectively. An interesting observation of the
comparison of ∆aggregate with ∆signature is that there are about 10 “spikes” in both derivatives
which are very similar in value and which punch cleanly through the noise. (The “spikes” in
∆signature tend to be a little smaller in magnitude than the spikes in ∆aggregate; we will address
this shortly). If you squint then the sequence of spikes in ∆signature look a little like a door key.
The analogy does not work very well visually, but the main idea is that the sequence of “spikes in
∆signature” can be used as a unique identifier for each device; an identifier which is both specific
enough to distinguish between devices and robust enough to be detected amongst the noise.

A broad outline of the disaggregation algorithm follows: say we’re looking for the washing ma-
chine’s fingerprint. We first look for a spike in ∆aggregate with a value of 2000, representing the
moment the washing machine first turns its heater on. After finding this “start spike” at time t,
we search near t+5minutes for a spike with a value of -2000 (the moment the washer turns its
heater off). If this is found then look a handful of other salient spikes at their expected times
and values. If we find all the salient spikes from the washing machine’s signature then we can
confidently attribute this fingerprint to the washing machine.

After observing that the spikes in ∆aggregate are highly similar to the corresponding spikes
in ∆signature, it became clear that the system must be re-engineered to take full advantage of
these “spikes in the derivative”. Given that we’re committed to a re-design, let us also re-consider
how to store this sequence of spikes in a way which represents the physical behaviour of electrical
appliances. The concept of “device power states” mentioned in the previous chapter still appears
to be a valid approximation for the physical behaviour of appliances. The hypothesis is that each
device has a finite set of “power states”. Each power state can be followed by a small number of
other power states. For example: the washing machine’s heater is always followed by a slow turn
of the drum; never by a fast spin. Each device has a finite set of power states and a finite set of
permissible power state sequences.

How should “spikes” be represented together with power states? In the previous design, power
states were represented as a flat list, as were permissible sequences. That seemed a valid approach
until it further data collection demonstrated that the washing machine arbitrarily repeats certain
sub-sequences (figure 6.2). Supposedly the washing machine constantly measures the water temper-
ature in the drum and if the temperature drops below a certain threshold then it turns the heater
on. The precise timing of the heater’s state changes, and indeed the number of times the heater
turns on, is dependent on external factors like the air temperature outside the washing machine,
the incoming water temperature etc. Our disaggregation system requires a data representation
format which can elegantly represent repeating sub-sequences.

During Imperial’s Robotics course, we were introduced to robot localisation algorithms which
represent a robot’s physical environment as a graph. Rooms are represented as vertices (nodes)

39

6. Final design iteration: graphs and spikes

0

2

4

6

8
p

ow
er

(k
W

)

0

1

2

p
ow

er
(k

W
)

0

2

4

ab
so

lu
te

er
ro

r
×

10
3

-2

-1

0

1

2

∆
×

1
03

-2

-1

0

1

2

11:45 12:00 12:15 12:30 12:45 13:00 13:15 13:30

∆
×

10
3

time

a) whole-house aggregate

b) washing machine signature 30°C wash

c) absolute(aggregate− signature)

d) ∆aggregate

e) ∆signature

Figure 6.1.: Panels a-c illustrate why Least Mean Squares fails to locate the washing machine
fingerprint (because, as shown in panel c, there are large errors around 11:45 and 13:20). (Please
note the different y-axis scales in panels a and b.) Panel a shows the aggregate data recorded
from the whole house, panel b shows the washing machine signature and panel c shows absolute
error. Panels d & e show the rate of change of the aggregate signal and the rate of change of the
signature, respectively.

40

6.2. Design

0

2

0

2

0

2

p
ow

er
(k

W
)

0

2

0

2

00:00 00:15 00:30 00:45 01:00 01:15 01:30 01:45 02:00
time

a) 30°C wash, 2nd July

b) 30°C wash, 10th July

c) 40°C wash, 6th August

d) 40°C quick wash, 5th August 10am

e) 40°C quick wash, 5th August 11am

Figure 6.2.: Comparison of 5 different runs of the same washing machine. The 2 kW readings
are the water heater. Note the considerable variation between runs.

and permissible routes between rooms are represented as edges between vertices. A graph data
structure could be used to store device power states as vertices and transitions between these
power states as directional edges. The edges of the power state graph perform a similar role to
the edges of the robot localisation graph: they represent the permissible “routes” between power
states. The permissible routes between power states are the “spikes in ∆signature“ which lie at the
boundary between power states. As such, an edge in our power state graph between vertex v and w
must capture information about the spike observed in ∆signature during the transition from power
state v to power state w. And because there is a considerable amount of noise in the signals, each
quantity must be represented statistically by a mean, minimum, maximum and standard deviation.
The basic idea is illustrated in figure 6.3 for a kettle.

6.2. Design

6.2.1. Overview of training algorithm

During training, the aim is to create a new power state graph from a set of raw device signatures.
The graph vertices represent the power state values. The graph edges are directional, having a
source and a target vertex. The graph edges represent the conditions required to transition from

41

6. Final design iteration: graphs and spikes

0

2.5

0 60

p
ow

er
(k

W
)

time (seconds)

(a)

-2.5

0

2.5

0 60

∆
×

10
3

time (seconds)

(b)

∆ = −2500
t = 60

∆ = 2500
t = 0

2500 W

0 W

(c)

Figure 6.3.: The basic steps for producing a power state graph for a kettle. First take the raw
signature (a). Next calculate ∆signature (b). Then produce a power state graph (c) where the
vertices represent the device power states and the edges represent the conditions necessary to
transition between power states.

one power state to another. In particular, the edges represent the expected timing and value of the
∆ spikes which indicate a transition between power states.

The first step is to calculate ∆signature which is simply done by subtracting samplei from
samplei+1. Next select the 10 most “salient and robust” spikes in ∆signature (exactly what “sali-
ent and robust” means will be discussed below but for now it’s sufficient to equate “salient” with
“largest magnitude”). We next need to determine the power states which lie either side of each
spike. For each spike ∈ ∆signature, we return to the raw device signature and create a statistical
representation for a set of samples immediately before the spike and another statistical represent-
ation for a set of samples immediately after the spike. We then search the existing vertices of the
power state graph1 to see if any vertex already represents either the “pre spike stats” or the “post
spike stats”. If no matching vertex is found then create a new one. Once a source vertex and a
target vertex has been identified or created, create an edge from source to target and record the
value and timing of spike in the edge.

An illustration of the training algorithm in action is show in figure 6.4. As can be seen from the
signature in figure 6.4, this device has 4 power states: 0, 100, 200 and 1,000 W, hence there are 4
vertices in the power state graph (panel b). This device cycles several times between the 100 W
power state and the 1,000 W power state, hence there is a cycle in the power state graph between
the 100 W and 1,000 W vertices.

Let us step through part of the signature to gain a clear understanding of how the power state
graph is created. The first “spike” in ∆signature happens 0 seconds after the start of the signature
and has a magnitude of 100 (because it transitions the device from 0 W to 100 W), hence we
record “∆ = 100, t=0” on the edge from “0 W” to “100 W”. The second spike in ∆signature
happens 60 seconds after the first spike, has a ∆ of 900 and marks the transition from 100 W to
1,000 W. This spike is recorded on the edge from 100 W to 1,000 W. There are a further 2 transitions
from 100 W to 1,000 W later in the signature: one at 170 seconds (30 seconds after the preceding
spike) and one at 300 seconds (90 seconds after the preceding spike). Recall that each variable is
captured not as a single scalar value but as a statistical representation. The edge from 100 W to
1,000 W needs to capture 3 different durations: 30s, 60s and 90s, hence the statistics for the edge
from 100 W to 1,000 W are: tmin = 30, tmean = 60, tmax = 90.

Merge spikes

In section 6.1, we noted that some spikes in ∆signature are smaller in magnitude than the equi-
valent spike in ∆aggregate. This anomaly is troublesome given that a core requirement of our

1One nice feature of this approach is that exactly the same code is used to both create a new power state graph
from scratch and to update an existing power state graph from a new signature.

42

6.2. Design

0
100
200

1000

0 60 140 210 300 340 430 470

170
p

ow
er

(W
a
tt

s)

-900

-200

100

900

0 60 140 210 300 340 430 470

170

∆

time (seconds)

i) signature

ii) ∆signature

(a)

∆ = −900
tmin = 40
tmean = 60
tmax = 80

∆ = 100
t = 0

∆ = 900
tmin = 30
tmean = 60
tmax = 90

∆ = −200
t = 40

∆ = 100
t = 90

100 W

0 W

200 W1,000 W

(b)

Figure 6.4.: An illustration of the production of a power state graph from a signature which
includes repeating power state transitions. Panel a(i) shows the raw signature (which has been
fabricated to look a little like a washing machine signature). Panel a(ii) shows ∆signature.
Panel b shows the power state graph generated from the raw signature.

disaggregation system is that it must be able to reliably locate spikes in ∆aggregate of a specific
size. Why are some spikes smaller in ∆signature than in ∆aggregate?

Figure 6.5 shows a detailed comparison of spikes in ∆aggregate and ∆signature. The spike at
12:33:24 is of almost exactly the same magnitude in both ∆aggregate and ∆signature but the spike
at 12:34:03 is -2000 in ∆aggregate and only -1000 in ∆signature (i.e. half the magnitude). Recall
that the aggregate signal is sampled once every 6 seconds whilst the signature is sampled once a
second. For some reason, the device takes 2 seconds to transition between power states at 12:34:03
and so this transition is spread across 2 samples in the aggregate signal.

The solution is to “merge” spikes of the same sign into a single spike. This merging simply
searches for consecutive ∆signature data points and adds together consecutive data points with
the same sign.

Remove fleetingly transient spikes

One of our broad aims is to identify spikes in ∆signature which have a good chance of being found
in ∆aggregate. One problem with the aggregate signal is that, at best, it is sampled at a sixth
of the frequency at which the signature is sampled. Worse, the Current Cost smart meter which
records the aggregated signal occasionally drops a reading.

The end result is that we need to find power states in signature which last longer than, to be
safe, 18 seconds. A simple way to do this is to remove from ∆signature all equal and opposite
spikes within 18 seconds of each other.

We also remove any merged spikes with a magnitude of less than 10 because these are unlikely
to be found reliably in the aggregate signal (this does mean that, unfortunately, the current design
has no hope of disaggregating devices with a power consumption of 10 Watts or less).

43

6. Final design iteration: graphs and spikes

-2

-1

0

1

2

-2

-1

0

1

2

∆
×

1
03

a) ∆aggregate

-2

-1

0

1

2

12:33:24 12:34:03

-2

-1

0

1

2

∆
×

1
03

b) ∆signature

Figure 6.5.: A detailed comparison of “spikes” in ∆aggregate and ∆signature. The aggregate
and signature data were recorded simultaneously.

Reject power state transitions between highly similar power states

The ideal power state transition is one which moves between two power states with radically
different means and tiny standard deviations. A small standard deviation is desirable because
this indicates that the power state is relatively constant which will ease identification in the noisy
aggregate signal. A little bit of experimentation was required to come up with a set of criteria for
rejecting spikes. The exact criteria are given in algorithm 6.1, step 6c.

The full training algorithm is given in algorithm 6.1.

6.2.2. Overview of disaggregation algorithm

Once a complete power state graph has been created, how can this be used to locate the device’s
fingerprint in an aggregate signal?

Every power state graph has a “0 W” vertex (the “off” vertex; vertex 0). This “off ” vertex has
both an out-edge (representing the start of the device’s run) and at least one in-edge (representing
the end of the device’s run). The aim during disaggregation is to complete a round-trip through the
power state graph, starting and finishing at the “off” vertex. The disaggregation algorithm starts
by searching ∆aggregate for the spike encoded by the out-edge from the “off” vertex. Once the
algorithm finds this “start spike”, it calls the helper algorithm initTraceToEnd(vertex 1) which,
in turn, calls the recursive algorithm traceToEnd.

traceToEnd searches the aggregate signal for all spikes which constitute a permissible power state
transition to another vertex. This algorithm takes vertex v as an input parameter and starts by
obtaining a list of every out-edge from vertex v. For each edge ∈ outEdges, we search ∆aggregate for
the spike encoded by edge. If this spike is found then we let target← target vertex pointed to by edge
and call traceToEnd(target). A likelihood is calculated for each spike by passing the spike’s
actual magnitude to the probability density function for the spike’s statistical representation. (This
likelihood is normalised by dividing by the likelihood of the mean). In a similar fashion, a likelihood
is calculated for the time the spike was located. The likelihood for magnitude and the likelihood
for temporal location are averaged together and recorded.

Every hop completed by traceToEnd is recorded in a “disaggregation tree”. This is an acyclic
graph which records all the possible ways in which the power state graph can be “fitted” to the
aggregate data. The vertices of the “disaggregation tree” represent each power state found in
the aggregate data. In particular, each vertex records the start timestamp and the Wattage for
each power state. Each edge records the likelihood that the hop from the source to the target

44

6.2. Design

Algorithm 6.1 Training algorithm for creating or updating a powerStateGraph from a signature

1. Prepare a list of spikes:

a) Let ∆si be samplei+1 − samplei for all sample ∈ Signature

b) Let mergedSpikes be a list of “merged” spikes. “Merging” finds consecutive values of
∆s with the same sign and adds them together. (See section 6.2.1 in the main text).
Each merged spike in mergedSpikes is represented as a tuple of the form
(index , n, merged∆s) where

merged∆s =
i+n∑
j=i

∆sj

where i is the start index and n is the number of consecutive samples “merged”.

c) Erase from mergedSpikes all spikes with ∆s < 10

d) Erase from mergedSpikes any fleetingly transient spikes (see section 6.2.1): For each
spike ∈ mergedSpikes, let spikesAhead be a set of all spikes up to 20 seconds forward in
time from spike. If any spikeAhead ∈ spikesAhead has a merged∆s of opposite sign and
a magnitude within 20 % of the magnitude of spike.merged∆s then erase both spike
and spikeAhead.

e) Let spikes be the 10 mergedSpikes with the greatest magnitude merged∆s

2. Let powerStateGraph be a graph whose vertices store statistics describing a power state and
whose edges store the pair (deltaStats, durationStats) where deltaStats is a statistical repres-
entation of a set of spike.merged∆s and where durationStats is a statistical representation of
the length of time this edge’s source power state should last.

3. Create a vertex for representing “off”, offVertex

4. Let sourceVertex← offVertex

5. Let indexOfLastAcceptedSpike← 0

6. For each spike ∈ spikes do:

a) Let preSpikePowerState be a statistical representation of the 8 raw samples before
spike.index

b) Let postSpikePowerState be a statistical representation of the 8 raw samples after
spike.index + spike.n

c) Reject this spike and continue to the next spike if any of the following criteria are met:

i. preSpikePowerState.stdev > preSpikePowerState.mean

ii. postSpikePowerState.stdev > postSpikePowerState.mean

iii. preSpikePowerState.mean and postSpikePowerState.mean are within
0.2×max(preSpikePowerState.mean, postSpikePowerState.mean)

d) Add or update a vertex. Search through each vertex ∈ powerStateGraph looking for a
vertex which has a similar mean (assessed by T-Test) to postSpikePowerState. If a
similar existing vertex is found then update that vertex with the raw data used to
make postSpikePowerState and set targetVertex← vertex. If no existing vertex is found
then create a new vertex with values taken from postSpikePowerState and set
targetVertex← vertex.

e) Add or update an edge. If an edge already exists from sourceVertex to targetVer-
tex then update its stats, else add a new one with deltaStats ← spike.merged∆s and
durationStats← spike.index− indexOfLastSpike

f) indexOfLastSpike← spike.index and sourceVertex← targetVertex

45

6. Final design iteration: graphs and spikes

0
200

500

1000

24 150204 288 390 492 618

172 312 444 576

p
ow

er
(W

a
tt

s)

-900

-200
100

900

24 150204 288 390 492 618

172 312 444 576

∆

time (seconds)

i) signature
aggregate

ii)
∆aggregate

(a)

100%75%

100%

71%

t = 150, p = 100

t = 150, p = 0

t = 204, p = 1000t = 172, p = 1000

etc.

t = 288, p = 100

t = 618, p = 0

(b)

Figure 6.6.: Locating our synthetic washing machine signature in a synthetic aggregate signal.
Panel a(i) shows the aggregate signal in red and the signature we’re trying to locate in solid
grey. Panel a(ii) shows ∆aggregate. The system first produces the power state graph shown in
figure 6.4 from the device signature and then uses this power state graph to locate this device’s
fingerprint in the aggregate signal. The tree structure in panel b shows the “disaggregation tree”
produced when the system attempts to determine if t = 150 is the beginning of a complete
fingerprint of the device (which it is). The vertices represent power states located in the
aggregate signal. The two variables stated in the graph vertices are t (start time) and p (power
in Watts). The values associated with each edge are average likelihoods that the spike found in
∆aggregate is the correct value and time. The vertices between t = 288 and t = 618 have been
omitted to save space. (In panel a(i), the signature does not perfectly align with the aggregate
signal because the aggregate signal has a sample period of 6 seconds, whilst the signature has a
sample period of 1 second.)

vertex is correct. Once the disaggregation tree is completed, a simple “recursive flood” algorithm
runs through every complete path in the disaggregation tree finding the path with the highest mean
likelihood. This path is then reported to the user, along with the path’s duration and the estimated
energy consumption of the device. The broad disaggregation approach is illustrated in figure 6.6.

Let us briefly run through the disaggregation illustrated in figure 6.6. The first step is to obtain
the spike value encoded by the out-edge from the “off” vertex in the power state graph. In the case of
this illustration, a value for ∆ of 100 marks the start of a device run. The disaggregation algorithm
searches ∆aggregate for times where ∆aggregate = 100. The three times where ∆aggregate = 100
are t = 24, 150 and 576. The system then “follows through” on each of these start times, using
the function traceToEnd to attempt to complete a round-trip through the power state graph back
to “off”. The disaggregation tree produced by “following through” from the start spike at t = 150
is given in figure 6.6 panel b. The algorithm has already identified that the spike at t = 150 may
represent a transition from “off” to “100 W”, hence there is a vertex marked “p = 100” immediately
down-stream of the off vertex. The spike is precisely the correct magnitude, hence the likelihood
marked on the edge from the off vertex is “100 %”. Where do we go from this power state?

The power state graph dictates that there are two possible ways to transition away from the
“100 W” vertex: either a spike with magnitude 900 at 30-90 seconds ahead, or a spike with mag-
nitude 100 at 90 seconds ahead. traceToEnd searches for spikes which fit these parameters. Spikes
with a value of 900 within the expected time window are found at t = 172 and t = 204 (hence the
branch in the disaggregation tree). These are candidates for a transition from the “100 W” power

46

6.2. Design

Algorithm 6.2 Main algorithm for disaggregating aggregate data using powerStateGraph

1. Let startSpike be the spike described by the first edge of powerStateGraph

2. For every possibleStartSpike in ∆aggregate matching startSpike:

a) Let candidateFingerprint ← initTraceToEnd(possibleStartSpike)

b) If initTraceToEnd succeeds then add candidateFingerprint to fingerprintList

3. Remove overlapping fingerprints. Fingerprints A and B overlap if
A.startTime < B.startTime < A.endTime. If A and B overlap then remove the fingerprint
with the lowest confidence. Repeat until no fingerprints overlap. (The assumption is that each
household only has a single instance of each device and hence overlapping device signatures
must not be allowed. If multiple instances of the same device do indeed exist then overlapping
fingerprints can be kept by supplying disaggregate with a --keep-overlapping argument.)

4. Return fingerprintList

state to “1,000 W”. traceToEnd calls itself twice: once for t = 172 and once for t = 204. Both of
these subsequent instantiations of traceToEnd search for a spike where ∆aggregate = −900 within
the specified time window of 40-80 seconds. The instance of traceToEnd attempting to “follow
through” on t = 172 fails to find a suitable spike 40-80 seconds ahead of t = 172 and so gives up.
But the instance of traceToEnd attempting to “follow through” on t = 204 successfully finds a
-900 spike at t = 288 and calls traceToEnd again. After several more recursions, the “off vertex”
is successfully located at t = 618. In this simple example, only one complete path exists in the
disaggregation tree and so this path is reported to the user.

Estimating energy consumption & recording inter-spike power statistics

One nice feature of the “graph and spikes” approach is that it allows us to estimate the power
consumption of each fingerprint with very little effort because the disaggregation algorithm already
collects all the information we need: the mean power consumption and the duration of each power
state. Estimating total energy consumption for each power state in the disaggregation tree is simply
a case of multiplying the power consumption (1 Watt is 1 Joule per second) by the power state
duration (in seconds) to arrive at a total energy consumption in Joules. The most common unit
for describing domestic energy consumption is the kilowatt hour (kWh). An energy consumption
figure in Joules can be converted to kilowatt hours (kWh) by dividing by 3.6× 106.

Recall that the training algorithm defines each power state by creating a statistical representation
of only 8 samples immediately preceding and following each spike. Testing demonstrates that this
works well for training the power state graph and even provides a respectable basis for estimating
the total energy consumed by each device run. However, the power consumption of complex devices
like washing machines fluctuates considerably between each spike (recall that we only take 10 spikes
from each signature yet a washing machine signature may be up to 2 hours in length; we cannot
assume that the washing machine’s power consumption remains constant between these 10 spikes).
To do a better job of estimating the power consumed by each device run, we also store statistics
for every signature sample between adjacent spikes. These “betweenSpikes” statistics have a huge
standard deviation and hence are not suitable for use as the primary definition of a “power state”.
The “betweenSpikes” statistics are only used for estimating energy consumption.

The top-level disaggregation algorithm is given in algorithm 6.2, the algorithm for initTrace-
ToEnd() is given in algorithm 6.3 and the algorithm for traceToEnd() is given in algorithm 6.4.

47

6. Final design iteration: graphs and spikes

Algorithm 6.3 Algorithm for initTraceToEnd(spike)

1. Create a new disaggregationTree. A path through disaggregationTree from the root vertex to a
leaf vertex represents one possible “fit” of the powerStateGraph to the aggregateData, starting
at a single possibleStartSpike. The root vertex of the disaggregationTree always represents
“off”. Tree vertices hold a timestamp and a pointer to a powerStateGraph vertex. Tree edges
hold a likelihood represented as a float.

2. Add offVertex

a) Let offVertex.timestamp ← possStartTimeOfFingerprint where:

possStartTimeOfFingerprint ← spike.timestamp − powerStateGraph[edge0].duration

b) Let offVertex.psgVertex ← powerStateGraph[vertex0]

3. Add firstVertex

a) Let firstVertex.timestamp ←spike.timestamp

b) Let firstVertex.psgVertex ←powerStateGraph[vertex1]

4. Add edge from offVertex to firstVertex. Let edge.likelihood ← spike.likelihood

5. traceToEnd(disaggregationTree, firstVertex). This populates disaggregationTree by recurs-
ively finding every possible fit of powerStateGraph to aggregateData

6. Let listOfPaths be a flat list of all complete paths from disaggregationTree[offVertex]
to another offVertex. This flat list is produced by the “recursive flood” algorithm
findListOfPathsThroughDisagTree

7. Return the path in listOfPaths with the highest average likelihood

48

6.3. Implementation

Algorithm 6.4 Recursive algorithm for traceToEnd(disaggregationTree, disagVertex)

1. Base case: if (disaggregationTree[disagVertex] == offVertex) then return.

2. Let psgOutEdges be a list of all out edges from the powerStateGraph vertex pointed to by
disagVertex.psgVertex

3. For each psgOutEdge ∈ psgOutEdges search for all spikes in ∆aggregate where ∆aggregate =
psgOutEdge.∆s within a specific search window. Specifically, do this:

Calculate the boundaries of the search window:

a) Let e← powerStateGraph[psgOutEdge].duration.stdev

b) Let beginningOfSearchWindow ← disaggregationTree[disagVertex].timestamp +
powerStateGraph[psgOutEdge].duration.min− e

c) Let endOfSearchWindow ← disaggregationTree[disagVertex].timestamp +
powerStateGraph[psgOutEdge].duration.max + e

d) Let list foundSpikes be all spikes in ∆aggregate where ∆aggregate =
powerStateGraph[psgOutEdge].∆s between beginningOfSearchWindow and
endOfSearchWindow

e) For each spike ∈ foundSpikes create a new vertex in disaggregationTree and recursively
traceToEnd this new vertex. Specifically, do this:

i. Calculate a normalised likelihoodForTime of finding spike at spike.timestamp

ii. Let averageLikelihood ← (likelihoodForTime + spike.likelihood) ÷ 2

iii. Add newVertex to disaggregationTree

• Let newVertex.timestamp ←spike.timestamp

• Let newVertex.psgVertex ←target(psgOutEdge)

iv. Add a newEdge from disagVertex to newVertex

• Let newEdge.likelihood ←averageLikelihood

v. traceToEnd(disaggregationTree, newVertex)

6.3. Implementation

A quick reminder that the Doxygen documentation for the code is available at
www.doc.ic.ac.uk/∼dk3810/disaggregate

6.3.1. Maintaining “legacy” functions and classes

The “Graphs and Spikes” design iteration represents a significant shift away from the previous
design so a new git branch was started. Should the irrelevant classes and methods be completely
removed from this branch so the new design can be free from any “legacy” code?

The existing Array and Signature classes and the GNUplot and Utils helper code can be ex-
ploited for the new design with little modification. The Statistic, Array, Device and AggregateData

classes are useful but will need to be given several important new methods (as will be discussed
below).

The Histogram and PowerStateSequence classes are simply no longer relevant. My gut instinct
was to remove these completely but I did not do this for 2 reasons: firstly, I wanted to refer to
these functions in the report chapters discussing previous design iterations. Secondly, I wanted to
keep the previous designs functional so the user could specify at the command line which “mode”
to use (the default mode is the “graph and spikes” mode. The command-line switches --lms and
--histogram switch to the relevant modes (see the User Guide in appendix A)).

49

http://www.doc.ic.ac.uk/~dk3810/disaggregate

6. Final design iteration: graphs and spikes

A new PowerStateGraph class was created to do the bulk of the new “graphs and spikes” work.
PowerStateGraph is responsible for creating a new power state graph from a Signature and for
disaggregating an AggregateData signal.

A UML diagram showing all the functions relevant to the “graphs and spikes” design iteration
is shown in figure 6.7.

6.3.2. Boost graph library

Both the “power state graph” and the “disaggregation tree” are implemented using the Boost
Graph Library2. This is a remarkably powerful library.

The Boost Graph Library allows users to specify custom classes for graph vertices and edges
(these are called “bundled properties”).

First we define a struct for storing power state statistics in each graph vertex. Recall that we
store two sets of statistics for each power state: the postSpike stats for the 8 samples immediately
after each spike (used by the main training algorithm) and betweenSpikes stats for the sole pur-
pose of estimating energy consumption. Here is the definition of our custom PowerStateVertex

structure:

struct PowerStateVertex {
/∗ Stat s f o r 8 samples immediately a f t e r the sp ike .
∗ Used f o r determining v e r t i c e s during t r a i n i n g . ∗/

S t a t i s t i c <Sample t> postSpike ;

/∗ Stat s f o r the e n t i r e per iod between s p i k e s .
∗ Used only f o r e s t imat ing energy consumption . ∗/

S t a t i s t i c <Sample t> betweenSpikes ;

/∗ (Sample t i s s imply a typede f f o r a double .) ∗/
} ;

Next we define a struct for the power state graph edge. Each edge stores two sets of statistics:
the ∆signature value and the duration of the power state defined by the source edge. In other
words, the edge represents the conditions necessary for leaving the power state represented by the
edge’s source vertex.

struct PowerStateEdge {
S t a t i s t i c <double> d e l t a ;
S t a t i s t i c <s i z e t > durat ion ;

} ;

Finally, we create a graph type which uses our two custom classes:

typedef boost : : a d j a c e n c y l i s t <
boost : : vecS , boost : : vecS , // mul t ip l e edges between v e r t i c e s
boost : : d i rectedS , // we need d i r e c t i o n a l edges
PowerStateVertex , // our custom vertex (node) type
PowerStateEdge // our custom edge type

> PSGraph ;

boost::vecS tells Boost Graph Library to use a std::vector<> as the container for repres-
enting each edge-list associated with each vertex; the end result is that vecS allows each vertex to
have multiple in- and multiple out-edges, which is what we want. However, vecS also allows edges
to exist which do two things we don’t want (figure 6.8): 1) edges which leave and enter a single
vertex and 2) two vertices can have multiple edges in the same direction between them. These two
problems are solved by running two checks prior to adding a new edge. We only add a new edge

2boost.org/doc/libs/1 42 0/libs/graph/doc/index.html

50

http://www.boost.org/doc/libs/1_42_0/libs/graph/doc/index.html
http://www.boost.org/doc/libs/1_42_0/libs/graph/doc/index.html
http://www.boost.org/doc/libs/1_42_0/libs/graph/doc/bundles.html
http://www.boost.org/doc/libs/1_42_0/libs/graph/doc/index.html

6.3. Implementation

Device
name: string
void loadSignatures(sigFiles)
void trainPowerStateGraph()
PowerStateGraph& getPSG()

PowerStateGraph
deviceName: string
void update(sig)
void disaggregate(aggData)
void writeGraphViz(out)
PSGraph::vertex updateOrInsetVertex(sig, pre, post)
PSGraph::vertex mostSimilarVertex(success, alpha)
bool rejectSpike(before, after)
void updateOrInsertEdge(before, after, s, delta)
Fingerprint initTraceToEnd(spike, devStart)
void traceToEnd(tree, vertex)
void addItemToEdgeHistory(edge)
bool edgeListsAreEqual(a, b)
void findListOfPathsThroughDisagTree(tree, vertex, LAV, path)
Fingerprint findBestPath()
void removeOverlapping(fingerprints)

Array
data: T*
size: size_t
void copyCrop(source, cropFront, cropBack)
void dumpToFile(filename)
T getDelta(i)
void loadData(filestream)
void drawGraph(details, xlabel, ylabel, args)
size_t getNumLeadingZeros()
size_t getNumTrailingZeros()

T

AggregateSample
timestamp: size_t
reading: size_t

AggregateData
samplePeriod: size_t
aggDataFilename: string
void loadCurrentCostData(filename)
size_t secondsSinceFirstSample(i)
int aggDelta(i)
size_t findTime(time)
list<FoundSpike> findSpike(spike,start,end)
bool readingGoesBelowPowerState(start,end)
size_t checkStartAndEndTimes(start,end)

Signature
samplePeriod: size_t
sigID: size_t
list<Spike> getDeltaSpikes()
double getEnergyConsumption()
void drawGraph(details)
list<Spike> getMergedSpikes()

Statistic
mean: double
stdev: double
min: T
max: T
numDataPoints: size_t
dataStore: list<T>
void update(data, beginning, end)
bool similar(other, alpha)
double tTest(other)
double nonZeroStdev()
double normalisedLikelihood()

T

Fingerprint
timestamp: size_t
duration: size_t
energy: double
avLikelihood: double

PS Edge
delta: Statistic<double>
duration: Statistic<size_t>
edgeHistory: list<PSGraph::edge>

PS Vertex
postSpike: Statistic<Sample_t>
betweenSpikes: Statistic<Sample_t>

DisagVertex
timestamp: size_t
psgVertex: PSGraph::vertex

<boost::adjacency_list>

DisagTree

edge_writer
vertex_writer

<boost::adjacency_list>

PSGraph

edge_writer
vertex_writer

FoundSpike
timestamp: size_t
delta: Sample_t
likelihood: double

Spike
index: size_t
n: size_t
delta: double

<AggregateSample>

<Sample_t>

1..*

1

1

1

1

1

1

1..*

1

1..*

1

1..*

Figure 6.7.: UML Diagram for “Graphs and Spikes” design iteration. Sample t is a type for
representing samples and is just a typedef for a double.

51

6. Final design iteration: graphs and spikes

1

0

2

(a) Good edges.

1

2

(b) Bad edges.

Figure 6.8.

if the new edge’s sourceVertex!=targetVertex. If an edge already exists from sourceVertex to
targetVertex then we update that edge rather than adding a new edge.

6.3.3. Overview of the PowerStateGraph class

(Doxygen HTML documentation for PowerStateGraph, including call and caller graphs is available
at www.doc.ic.ac.uk/∼dk3810/disaggregate/class power state graph.html)

The main responsibility of the PowerStateGraph class is to wrap around a powerStateGraph

object of type PSGraph (defined in the code snippet above). PowerStateGraph has 2 broad cat-
egories of method: methods for training the powerStateGraph and methods for disaggregating an
AggregateData signal using the powerStateGraph.

Training

PowerStateGraph::update(const Signature& sig) is the public interface to PowerStateGraph’s
training algorithm. PowerStateGraph::update() first acquires a list of delta spikes from
sig.getDeltaSpikes() and selects the 10 largest spikes. For each spike, create stats for
preSpikePowerState and postSpikePowerState. Next, check to make sure the pre- and
post-SpikePowerState stats have means which are sufficient far apart. If so then update or insert
a new vertex to represent the postSpikePowerState. Then update or insert a new edge to repres-
ent the spike. The simplified code is below (for the purposes of this simplified code, the code for
maintaining the betweenSpikes statistics has been omitted):

void PowerStateGraph : : update (const Signature& s i g)
{

l i s t <Signature : : Spike> s p i k e s = s i g . ge tDe l taSp ike s () ;
sourceVertex = o f fVe r t ex ;
indexOfLastAcceptedSpike = 0 ;

// f o r each spike , l o c a t e 8 samples immediately be f o r e and a f t e r the sp ike
for (sp ike = s p i k e s . begin () ; sp ike != s p i k e s . end () ; sp ike++) {

// c a l c u l a t e the s t a r t index f o r the 8 pre−sp ike samples
s i z e t s t a r t = ((sp ike−>index > 8) ? (spike−>index − 8) : 0) ;

// c a l c u l a t e the end index f o r the 8 post−sp ike samples
s i z e t end = spike−>index + 8 + spike−>n + 1 ;

// Create s t a t i s t i c s f o r pre− and post−sp ike
S t a t i s t i c <Sample t> preSpikePowerState (s ig , s t a r t , sp ike−>index) ;
S t a t i s t i c <Sample t> postSpikePowerState (s ig ,

52

http://www.doc.ic.ac.uk/~dk3810/disaggregate/class_power_state_graph.html

6.3. Implementation

(sp ike−>index + spike−>n + 1) , end) ;

i f (! r e j e c t S p i k e (preSpikePowerState , postSpikePowerState)) {
ta rgetVertex = updateOrInsertVertex (s ig , postSpikePowerState) ;

i f (sourceVertex != targetVertex)
updateOrInsertEdge (sourceVertex , targetVertex ,

(sp ike−>index − indexOfLastAcceptedSpike) , sp ike−>d e l t a) ;

sourceVertex = targetVertex ;
indexOfLastAcceptedSpike = spike−>index ;

}
}

}

Simplified code listings for updateOrInsertVertex(), updateOrInsertEdge() and
mostSimilarVertex() are available in appendix B.1.

Disaggregation:

PowerStateGraph::disaggregate(const AggregateData& aggregateData) is the public method
for disaggregation. This starts by loading the first edge from powerStateGraph() which gives us the
statistics for the delta spike indicating the start of a device run. Next use aggregateData.findSpike()
to search for the start delta in ∆aggregate. findSpike() returns a list of candidate start spikes. For
each candidate start spike, recursively attempt to complete a round-trip through powerStateGraph.
If this fails then avLikelihood is set to -1. If we successfully follow through then add this candidate
to the list of candidates we return. Finally, if any candidates overlap then remove all overlapping
candidates except the candidate with the highest confidence. The simplified code is below:

const l i s t <Fingerpr int> PowerStateGraph : : d i s a g g r e ga t e (
const AggregateData& aggregateData)

{

l i s t <Fingerpr int> f i n g e r p r i n t L i s t ; // what we return
F inge rp r in t cand ida t eF inge rp r in t ;
/∗ Finge rp r in t i s a s t r u c t f o r bundl ing s t a r t
∗ timestamp , durat ion , energy and avLike l ihood ∗/

/∗ Load the s t a t s from the f i r s t PowerStateGraph edge .
∗ The Boost Graph Lib prov ide s an out edges () func t i on which r e tu rn s
∗ a pa i r o f edge i t e r a t o r s : the f i r s t i t e r a t o r po in t s to the f i r s t edge ;
∗ the second i t e r a t o r po in t s 1 past the l a s t edge . Dere f e r enc ing an
∗ edge i t e r a t o r r e tu rn s an edge d e s c r i p t o r . t i e () a l l ows easy
∗ a c c e s s to each element o f the pa i r o f edge i t e r a t o r s . ∗/

PSG out edge i te r out i , out end ;
t i e (out i , out end) = out edges (o f fVertex , powerStateGraph) ;
PowerStateEdge f i r s t E d g e S t a t s = powerStateGraph [∗ o u t i] ;

// Search through aggregateData f o r p o s s i b l e s t a r t s p i k e s
l i s t <AggregateData : : FoundSpike> posSta r tSp ike s =

aggregateData . f i ndSp ike (f i r s t E d g e S t a t s . d e l t a) ;

// For each p o s s i b l e s t a r t sp ike in the d e l t a aggregate , attempt
// to f i n d a l l the subsequent s p i k e s s p e c i f i e d by powerStateGraph edges .

53

6. Final design iteration: graphs and spikes

for (posStar tSp ike=posSta r tSp ike s . begin () ;
posStar tSp ike != posSta r tSp ike s . end () ; posStar tSp ike++) {

// Attempt to r e c u r s i v e l y ” f o l l o w through ” from t h i s posStar tSp ike .
// initTraceToEnd () c a l l s the r e c u r s i v e func t i on traceToEnd () .
cand ida teF inge rp r in t = initTraceToEnd (∗ posStar tSp ike) ;

// I f t h i s s t a r t sp ike was s u c c e s s f u l l y t raced a l l the way to
// an o f f power s t a t e then add t h i s item to f i n g e r p r i n t L i s t .
i f (cand ida t eF inge rp r in t . avL ike l ihood != −1)

f i n g e r p r i n t L i s t . push back (cand ida t eF inge rp r in t) ;
}

i f (f i n g e r p r i n t L i s t . empty ()) {
cout << ”No s i g n a t u r e s found . ” << endl ;

} else {
removeOverlapping (&f i n g e r p r i n t L i s t) ;
d i s p l a y A n d P l o t f i n g e r p r i n t L i s t (f i n g e r p r i n t L i s t) ;

}

return f i n g e r p r i n t L i s t ;
}

Simplified code listings for initTraceToEnd(), traceToEnd() and
findListOfPathsThroughDisagTree() are available in appendix B.2.

6.3.4. Updating statistics

The “Graph and Spikes” design requires that the Statistic class be able to update existing
statistics with new data. This is trivial for mean, min and max but is not trivial for standard

deviation. An early version of the Statistic::update() function attempted to get by simply
by storing an intermediate value used during the standard deviation calculation. This proved not
sufficiently accurate and so each Statistic object now stores a copy of every value it has ever been
asked to represent. This is a memory-hungry approach and there are likely to be ways to make this
more efficient.

6.3.5. Non-zero standard deviation & calculating likelihood

The “average likelihood” reported for each candidate fingerprint is an average of three different
likelihoods:

1. The average likelihood of every spike.timestamp (i.e. the likelihood of finding a spike with
the timestamp the spike was found with)

2. The average likelihood of every spike.delta (i.e. the likelihood of finding a spike with the
∆aggregate value the spike was found with)

3. The likelihood of the entire fingerprint’s energy consumption

Each likelihood is calculated using the boost::math::pdf() function. The likelihood is then
normalised by dividing the raw likelihood by the likelihood of the distribution’s mean. The end
result is that we get a number between 0 and 1 which tells us how close we are to the distribution’s
mean; if we’re right on target then the normalised likelihood will be 1. To illustrate, here is the
code for calculating the normalised likelihood:

54

http://www.boost.org/doc/libs/1_42_0/libs/math/doc/sf_and_dist/html/math_toolkit/dist/dist_ref/dists/normal_dist.html

6.3. Implementation

const double S t a t i s t i c : : no rma l i s edL ike l ihood (const double x) const
{

// Create a normal d i s t r i b u t i o n
boost : : math : : normal d i s t (mean , nonZeroStdev ()) ;

// Ca l cu la te normal i sed l i k e l i h o o d
return boost : : math : : pdf (d i s t , x) /

boost : : math : : pdf (d i s t , mean) ;
}

What does “nonZeroStDev()” do? Given my small training data set, several “statistics” are
formed from only a single value and hence have a standard deviation of 0. It makes no sense
to try to calculate a likelihood from a “distribution” with a standard deviation of 0. So, as an
approximation, Statistic::nonZeroStdev() does this:

const double S t a t i s t i c : : nonZeroStdev () const
{

i f (stdev < 1)
return f abs (mean / 1 0) ;

else
return stdev ;

}

6.3.6. Indexing aggregate data by timecode

Recall that the Current Cost home energy monitor fails to record approximately 10 % of the samples
measured by the sensor; hence we must compensate for the fact that two adjacent recorded samples
may not have been sampled precisely 6 seconds apart. To handle this problem as robustly as
possible, we index the aggregate data by timecode rather than by array index.

6.3.7. Data output

There are three forms of data output from PowerStateGraph. For the purposes of illustration,
we’ll use the example of disaggregating a washing machine from a single day’s aggregate data. Two
washing machine signatures will be used to train the power state graph.

Text output to the standard terminal. For example:

***** TRAINING POWER STATE GRAPH... *****

Energy consumption from sig0 = 0.307 kWh

Energy consumption from sig1 = 0.403 kWh

Mean energy consumption = 0.355 kWh

Power State Graph vertices:

0 = {min = 0.0, mean = 0.0, max = 0.0, stdev = 0.0, n = 0}
(offVertex)

1 = {min = 2239.3, mean = 2324.9, max=2396.8, stdev = 32.1, n = 40}
2 = {min = 2.5, mean = 127.5, max= 282.7, stdev = 62.2, n = 48}
3 = {min = 14.2, mean = 14.3, max= 14.7, stdev = 0.2, n = 32}
4 = {min = 468.7, mean = 517.1, max= 553.7, stdev = 33.2, n = 8}

***** TRAINING FINISHED. DISAGGREGATION STARTING. *****

Finding start deltas... found 47 possible start deltas. Following through...

... done following through.

No candidate fingerprints overlap.

55

6. Final design iteration: graphs and spikes

Candidate fingerprint found:

timestamp = 1310294456

date = Sun Jul 10 11:40:56 2011

av likelihood = 0.89

duration = 6902 seconds (1h 55m 2s)

energy = 1.37719e+06 Joules equivalent to 0.383 kWh

The powerStateGraph is output to data/output in two formats: The graphviz file describing
the powerStateGraph is output to powerStateGraph.gv and the PDF file produced from
the graphviz file is output to powerStateGraph.pdf. The graphviz file is produced using
boost::write graphviz() function called with two custom classes for formatting the edges
and vertices: PowerStateGraph::PSG edge writer and PowerStateGraph::PSG vertex writer.

The PDF file is produced by issuing a system() call to run the dot utility for converting
graphviz files into graphical files.

GNUplot files: Recall that my GNUplot code produces three files per GNUplot graph: a .dat

file storing the raw data, a .gnu file storing the instantiated GNUplot template and a .svg

graph. The first two graphs listed use the 1line.template.gnu GNUplot template.

<signature name>-afterCropping.[svg|dat|gnu] The raw signature file after it has had zeros
cropped from the tail and head.

<signature name>-delta.[svg|dat|gnu] The ∆signature data.

disagg.[svg|dat|gnu] This is the end-goal. This shows the aggregate data with each candidate
device fingerprint. An example is given in figure 6.9. The GNUplot template used is
disagg.template.gnu. The x-axis of the graph is scaled so we can see every fingerprint
plus a border either side.

6.3.8. Boost program options

The command-line arguments and the config/disaggregate.conf file are parsed by the Boost
Program Options library. All the code declaring and parsing the options is located in Main.cpp.

6.3.9. Refinements

Edge histories

When the code was first run as specified above, it did a good job of disaggregating kettles and
toasters but got stuck in hugely lengthy loops (taking many minutes to run) when disaggregat-
ing the washing machine. After some time trawling through the log files, it became clear that
the powerStateGraph was too weakly constrained so the poor disaggregation algorithm found an
enormous number of ways to fit the powerStateGraph to the aggregate data.

To better constrain the powerStateGraph, I added a “rolling edge history” to each edge (see
figure 6.10). The disaggregation algorithm is only allowed to travel across powerStateEdge edge e
if, at that point in time, the disaggregation algorithm has traversed the same sequence of edges as
specified in e.edgeHistory. For example, the power state graph in figure 6.10 (with an edge history
length of 2) constrains the disaggregation algorithm to a single round-trip from vertex 1 to vertex
2 and back to 1. This is because edge (1,2) has an edge history of (0,1) which means that edge
(1,2) can only be traversed if the disaggregation algorithm’s edge history is also (0,1) when it
attempts to traverse edge (1,2). Once the disaggregation algorithm has travelled through vertices
0, 1, 2, 1 then its “edge history” will be (1,2), (2,1) and hence will not be allowed to traverse
the (1,2) edge again.

56

http://www.boost.org/doc/libs/1_42_0/doc/html/program_options/overview.html
http://www.boost.org/doc/libs/1_42_0/doc/html/program_options/overview.html

6.3. Implementation

0

500

1000

1500

2000

2500

3000

3500

10/07
11:30

10/07
11:45

10/07
12:00

10/07
12:15

10/07
12:30

10/07
12:45

10/07
13:00

10/07
13:15

10/07
13:30

10/07
13:45

p
ow

er
(W

at
ts

)

time

Automatic disaggregation for washer

Automatically determined device fingerprint
Aggregate data

Figure 6.9.: An example of the disagg output for a washing machine. This shows the end-goal
of the entire system. The system has correctly identified the time and duration of the washing
machine fingerprint and has identified the timing for each power state within a single device run.

Ensure the absolute aggregate data value does not drop below power state minimum

Figure 6.11 shows the disaggregation algorithm attempting to fit a powerStateGraph trained on
washing machine signatures to a section of aggregate data dominated by the tumble drier. This is
a particularly bad answer because the aggregate data signal actually dips below the hypothesised
device power state at some points. One of our mantras so far has been “the absolute value of
the aggregate data signal is not useful”. However, the disaggregation algorithm is clearly failing
when it estimates that a device fingerprint exists where the aggregate signal drops below the signal
required by the fingerprint. The aggregate signal is a sum of all devices and so cannot be less than
the power consumption for a single device!

To fix this faulty logic, the traceToEnd() function was modified to check that the aggregate signal
never goes below the minimum value specified for each power state.

6.3.10. Parameters

The are several important const parameters defined throughout the code3 which affect the per-
formance. Let us quickly discuss some of the more important parameters. (The current value will
also be given)

PowerStateGraph::update() TOP SLICE SIZE = 10 The number of spikes to take from each signa-
ture. A larger value tends to produce a more complex (and hence more constrained) power
state graph. When training with two washing machine signatures, setting TOP SLICE SIZE to

3I would prefer to let users set these parameters at runtime in disaggregate.conf but this was not a priority during
development so, at the current stage of development, these parameters are set inside the code.

57

6. Final design iteration: graphs and spikes

(0,1)
(1,2)

(0,1)

(2,1)
(1,3)

(1,2)
(2,1)

1

0

32

Figure 6.10.: A power state graph with an edge history length of 2.

10 produces a power state graph with 4 vertices and 9 edges whilst setting TOP SLICE SIZE

to 100 produces 5 vertices and 12 edges (it does still disaggregate correctly).

PowerStateGraph::EDGE HISTORY SIZE = 5 The length of the “rolling edge history” (see section
6.3.9). Setting this to 0 disables the edge history which has no effect on the disaggregation
performance for simple devices like kettles but makes the system take many minutes to
disaggregate complex devices with cyclic power state graphs. Setting EDGE HISTORY SIZE

higher than TOP SLICE SIZE effectively turns the power state graph into a flat list.

PowerStateGraph::mostSimilarVertex() ALPHA = 0.0000005 The significance level for the t-test
(what constitutes as a ”satisfactory” match?)

PowerStateGraph::traceToEnd() WINDOW FRAME = 8 This is the number of seconds by which to
widen the search window (i.e. WINDOW FRAME is subtracted from begOfSearchWindow and
added to endOfSearchWindow). What is the purpose of this parameter? Recall that the
aggregate data has a sample period of 6 seconds whilst the signature data has a sample period
of 1 second, and that the Current Cost smart meter sometimes drops samples. This means
that a power state duration learnt from a signature is unlikely to be represented precisely
in the aggregate data. Let me illustrate the problem by example: say the disaggregation
algorithm is expecting a spike at, say, 00:00:10 but the two nearest samples in the aggregate
data are at 00:00:04 and 00:00:16. The job of WINDOW FRAME is to widen the search window
to minimise the chance of missing an event in the aggregate data due to the sample-rate
mismatch.

AggregateData::findSpike() There are several parameters within this function for tweaking how
strict findSpike() is while looking through ∆aggregate for a specific spike.

6.3.11. Testing and debugging

Units tests were implemented using the Boost Test Library4. Whenever possible, tests were written
at the same time as the function under test. The full suite of tests can be run with make testAll.
Alternatively, individual tests can be run with make <testtarget> where testtarget is one of the
following: ArrayTest, GNUplotTest, UtilsTest, StatisticTest, PowerStateGraphTest,

AggregateDataTest.

4boost.org/doc/libs/1 42 0/libs/test/doc/html/index.html

58

http://www.boost.org/doc/libs/1_42_0/libs/test/doc/html/index.html
http://www.boost.org/doc/libs/1_42_0/libs/test/doc/html/index.html

6.3. Implementation

0

500

1000

1500

2000

2500

3000

3500

14:50 15:00 15:10 15:20 15:30 15:40 15:50 16:00 16:10 16:20

p
ow

er
(W

at
ts

)

time

Automatic disaggregation for washer

Automatically determined device fingerprint
Aggregate data

Figure 6.11.: Incorrect disaggregation. The disaggregation algorithm has attempted to fit a
powerStateGraph trained on washing machine signatures to a section of aggregate data
dominated by the tumble drier. Note that, in places, the aggregate signal actually dips into the
fingerprint power state.

One of the biggest challenges during the software development was testing and debugging the
signal processing functions. Testing simple little functions like like bool Utils::roughlyEqual

(double, double) was easily done using routine unit testing but testing larger functions like
PowerStateGraph::disaggregate() was much harder. Detecting and fixing obvious problems
like seg faults was not a problem. The challenge came when the code ran fine but produced
slightly wrong answers. In an attempt to make it easier to test the signal processing functions, a
handful of synthetic signatures and aggregate data files were created. The real headaches came
when the code worked perfectly on all the tests but failed on real data. I found gdb not particularly
useful in this situation because the bug might be inside a loop which executes 1,000 times and might
fail on just one of those iterations (it’s entirely possible that I’ve missed a clever feature of gdb

which would have helped).

For a while the code made use of Google’s Logging Framework “glog”5 to output diagnostic
logging information about every function but this log file soon became unwieldy so glog was removed
from the code.

I settled on three broad solutions for running diagnostics. The first is to make extensive use of
GNUplot (via my GNUplot wrapper functions - see chapter 5) for plotting signals and graphviz6

for plotting graphs. It is crucial to be able to visualise each algorithm’s data input and output as
quickly as possible. If you can’t see the data then you’re developing “blind”.

The second solution is just standard programming practice: many functions start by doing a lot
of “sanity checking” to make sure they are getting the data they expect.

5code.google.com/p/google-glog
6graphviz.org

59

http://code.google.com/p/google-glog/
http://www.graphviz.org/
http://code.google.com/p/google-glog
http://www.graphviz.org

6. Final design iteration: graphs and spikes

The third solution is to simply print diagnostic information to the standard output. Each hard-
to-debug function takes a bool verbose argument (which defaults to false). If this is set to true

then the function prints diagnostic information to the standard output which can be piped to a text
file for analysis. It is not sufficient to have a single global DEBUG flag because it is often necessary
to inspect the behaviour of just a single function. The single biggest problem with this approach
is that it clutters up the code with lots of if (verbose) cout ... statements.

6.4. Performance

6.4.1. 10July.csv aggregate data

During the design and debugging I used 24 hours of aggregate data (data/input/current cost/10July.csv)
and two washer signatures, one toaster signature and two kettle signatures. One of each device
signature was recorded during this 24 hour period. Let us see how the system performs on this 24
hour period of aggregate data.

I will state the commands used to run each test. But first, here is a very quick tutorial on using
disaggregate (a more detailed manual is in the appendix): The main way to use disaggregate

is:

./disaggregate [AGG DATA FILE] -s [SIG FILE] -s [ANOTHER SIG FILE] -n [DEVICE NAME]

e.g.:

./disaggregate 10July.csv -s toaster.csv -s toaster2.csv -n toaster

The path for the aggregate data file is data/input/current cost and the path for the signature
data is /data/input/watts up

Please note that each row in the following data tables represents an actual device activation (i.e.
a device activation which we know for certain did happen). A “false negative” indicates that the
disaggregation algorithm failed to detect an event.

In all the disaggregation graphs; the solid blue blocks mark the output of the disaggregation
algorithm and the black line marks the aggregate signal.

The power state graphs shown below show a lot of information. Each vertex shows four rows of
data (min, mean, max, stdev) and two columns (the power state stats determined from the 8 samples
immediately after each spike; the power state stats determined from every sample between adjacent
spikes). Each edge shows a set of stats prefixed with a “d”; these are the statistics describing the
delta. Each edge also shows a set of stats prefixed with “dur”; these are the duration stats (in
seconds). Each edge also shows its edge history.

60

6.4. Performance

Toaster

Trained on toaster.csv (which was recorded simultaneously with the aggregate data)

./disaggregate 10July.csv -s toaster.csv -n toaster

vertex1 = {min=830.2 mean=845.163 max=865 stdev=11.7876 numDataPoints=8}

vertex 0

min=0; 0
mean=0; 0
max=0; 0

stdev=0; 0

vertex 1

min=865; 830.2
mean=865; 845.163

max=865; 865
stdev=0; 11.7876

dMean=873.1
 dSD=0

 dMin=873.1
 dMax=873.1
 durMean=0
 durSD=0
 durMin=0
 durMax=0

dMean=-812.9
 dSD=0

 dMin=-812.9
 dMax=-812.9
 durMean=124

 durSD=0
 durMin=124
 durMax=124

(0,1)

0

0.5

1

0 20 40 60 80 100 120 140
p

ow
er

(k
W

)

time (seconds)

Time Av likelihood Correct?

9:28:46 0.30 Y

11:00:57 0.91 Y

13:21:40 0.59 Y

0

0.5

1

1.5

2

2.5

3

3.5

10/07
09:30

10/07
10:00

10/07
10:30

10/07
11:00

10/07
11:30

10/07
12:00

10/07
12:30

10/07
13:00

10/07
13:30

p
ow

er
(k

W
)

time

Figure 6.12.: The toaster.csv signature file is shown in the top right panel. The graph on the
top left is the power state graph determined from the single toaster.csv signature file. The
table to the right of the power state graph shows three rows representing three actual
activations of the kettle and showing that the disaggregation algorithm found all three toaster
activations. The graph at the bottom of the page shows the aggregate data in black and the
automatically determined activations in blue. The toaster.csv signature was recorded at
11am hence the high likelihood for the 11am event.

61

6. Final design iteration: graphs and spikes

Kettle

Trained on only kettle.csv (which was recorded simultaneously with the aggregate data)

./disaggregate 10July.csv -s kettle.csv -s kettle2.csv -n kettle

vertex1 = {min=2743.7 mean=2752.43 max=2765.8 stdev=8.39962 numDataPoints=8}

vertex 0

min=0; 0
mean=0; 0
max=0; 0

stdev=0; 0

vertex 1

min=2740; 2743.7
mean=2770.34; 2752.43

max=2783.2; 2765.8
stdev=11.8919; 8.39962

dMean=2774.7
 dSD=0

 dMin=2774.7
 dMax=2774.7
 durMean=0
 durSD=0
 durMin=0
 durMax=0

dMean=-2783.3
 dSD=0

 dMin=-2783.3
 dMax=-2783.3
 durMean=114

 durSD=0
 durMin=114
 durMax=114

(0,1)

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100 120

p
ow

er
(k

W
)

time (seconds)

Time Av likelihood Correct?

08:15:08 0.72 Y

08:42:23 0.59 Y

08:55:38 — false neg

09:10:12 — false neg

09:27:48 — false neg

09:58:04 — false neg

10:30:32 0.88 Y

20:43:35 0.87 Y

22:08:21 — false neg

0

0.5

1

1.5

2

2.5

3

3.5

10/07
08:00

10/07
10:00

10/07
12:00

10/07
14:00

10/07
16:00

10/07
18:00

10/07
20:00

10/07
22:00

p
ow

er
(k

W
)

time

Figure 6.13.: Top left: power state graph trained on kettle.csv. Top right: kettle.csv
signature. Table: disaggregation performance. Bottom: the solid blue plot shows where the
disaggregation algorithm believes there’s a kettle fingerprint; the black line is the agg. signal.

Note that the system fails to detect 5 out of 9 actual activations of the kettle. This is simply
because there is a wide range of durations for the kettle yet the edge on the power state graph
from vertex 1 to 0 states a “durSD” (standard deviation of the power state duration) of 0 because
the PSG has been trained on only a single signature. Perhaps the system will do better if we train
with 2 kettle signatures (to better represent the full range of possible kettle durations)...

62

6.4. Performance

Trained on both kettle.csv and kettle2.csv

./disaggregate 10July.csv -s kettle.csv -s kettle2.csv -n kettle

vertex1 = {min=2743.7 mean=2752.43 max=2765.8 stdev=8.1148 numDataPoints=16}

vertex 0

min=0; 0
mean=0; 0
max=0; 0

stdev=0; 0

vertex 1

min=2740; 2743.7
mean=2768.53; 2752.43

max=2783.2; 2765.8
stdev=13.2242; 8.1148

dMean=2774.7
 dSD=0

 dMin=2774.7
 dMax=2774.7
 durMean=0
 durSD=0
 durMin=0
 durMax=0

dMean=-2783.3
 dSD=0

 dMin=-2783.3
 dMax=-2783.3
 durMean=84.5

 durSD=41.7193
 durMin=55

 durMax=114

(0,1)

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60

p
ow

er
(k

W
)

time (seconds)

Time Av likelihood Correct?

08:15:08 0.89 Y

08:42:23 0.64 Y

08:55:38 0.50 Y

09:10:12 0.87 Y

09:27:48 0.90 Y

09:58:04 0.55 Y

10:30:32 0.75 Y

20:43:35 0.79 Y

22:08:21 0.83 Y

0

0.5

1

1.5

2

2.5

3

3.5

10/07
08:00

10/07
10:00

10/07
12:00

10/07
14:00

10/07
16:00

10/07
18:00

10/07
20:00

10/07
22:00

p
ow

er
(k

W
)

time

Figure 6.14.: Top left: power state graph trained on kettle2.csv and kettle.csv. Top right:
kettle2.csv (half the duration of kettle.csv). Table & bottom graph: disaggregation.

The system disaggregates the kettle perfectly now that it has been trained using both kettle signa-
tures. Note that the edge on the power state graph from vertex 1 to 0 states a “durSD” (duration
standard deviation) of 41.7 reflecting the fact that the two signatures have a different duration.

63

6. Final design iteration: graphs and spikes

Washer

Trained on just washer2.csv (which was recorded simultaneously with the aggregate data)

./disaggregate 10July.csv -s washer2.csv -n washer

vertex1 = {min=2265.1 mean=2331.2 max=2396.8 stdev=21.54 numDataPoints=24}
vertex2 = {min= 2.5 mean= 140.1 max= 282.7 stdev=72.75 numDataPoints=32}
vertex3 = {min= 14.7 mean= 14.7 max= 14.7 stdev= 1.89e-15 numDataPoints= 8}
vertex4 = {min= 468.7 mean= 517.0 max= 553.7 stdev=33.18 numDataPoints= 8}

0

0.5

1

1.5

2

2.5

0 1000 2000 3000 4000 5000 6000 7000

p
ow

er
(k

W
)

time (seconds)

Figure 6.15.: washer2.csv signature

0

0.5

1

1.5

2

2.5

3

3.5

10/07
11:30

10/07
11:45

10/07
12:00

10/07
12:15

10/07
12:30

10/07
12:45

10/07
13:00

10/07
13:15

10/07
13:30

10/07
13:45

p
ow

er
(k

W
)

time

Figure 6.16.: The solid blue shows the disaggregation algorithm’s estimation of where the
washer fingerprint is. It has successfully located the main elements of the washer signature.

Time Av likelihood Correct?

11:41:06 0.88 Y

The power state graph is on the next page.

64

6.4. Performance

vertex 0

min=0; 0
mean=0; 0
max=0; 0

stdev=0; 0

vertex 1

min=2195.6; 2265.1
mean=2291.25; 2331.28

max=2396.8; 2396.8
stdev=43.5232; 21.541

dMean=2360.7
 dSD=0

 dMin=2360.7
 dMax=2360.7
 durMean=183

 durSD=0
 durMin=183
 durMax=183

vertex 2

min=1.6; 2.5
mean=99.7206; 140.141

max=719.7; 282.7
stdev=70.4855; 72.7531

dMean=-2314.5
 dSD=0

 dMin=-2314.5
 dMax=-2314.5
 durMean=267

 durSD=0
 durMin=267
 durMax=267

(0,1)

dMean=-2319.4
 dSD=0

 dMin=-2319.4
 dMax=-2319.4
 durMean=44

 durSD=0
 durMin=44
 durMax=44

(0,1)
(1,2)
(2,1)

dMean=-2289.9
 dSD=0

 dMin=-2289.9
 dMax=-2289.9
 durMean=37

 durSD=0
 durMin=37
 durMax=37

(0,1)
(1,2)
(2,1)
(1,2)
(2,1)

dMean=-236.3
 dSD=0

 dMin=-236.3
 dMax=-236.3
 durMean=334

 durSD=0
 durMin=334
 durMax=334

(2,1)
(1,2)
(2,3)
(3,4)
(4,2)

dMean=2294.6
 dSD=0

 dMin=2294.6
 dMax=2294.6
 durMean=115

 durSD=0
 durMin=115
 durMax=115

(0,1)
(1,2)

dMean=2264.1
 dSD=0

 dMin=2264.1
 dMax=2264.1

 durMean=2547
 durSD=0

 durMin=2547
 durMax=2547

(0,1)
(1,2)
(2,1)
(1,2)

vertex 3

min=1.8; 14.7
mean=70.776; 14.7

max=699.5; 14.7
stdev=82.9584; 1.89901e-15

dMean=-227.3
 dSD=0

 dMin=-227.3
 dMax=-227.3

 durMean=2652
 durSD=0

 durMin=2652
 durMax=2652

(1,2)
(2,1)
(1,2)
(2,1)
(1,2)

vertex 4

min=468.7; 468.7
mean=504.917; 517.05

max=538.9; 553.7
stdev=28.904; 33.189

dMean=531.8
 dSD=0

 dMin=531.8
 dMax=531.8

 durMean=716
 durSD=0

 durMin=716
 durMax=716

(2,1)
(1,2)
(2,1)
(1,2)
(2,3)

dMean=-383.1
 dSD=0

 dMin=-383.1
 dMax=-383.1
 durMean=11

 durSD=0
 durMin=11
 durMax=11

(1,2)
(2,1)
(1,2)
(2,3)
(3,4)

Figure 6.17.: Power state graph trained on washer2.csv
65

6. Final design iteration: graphs and spikes

Trained on washer2.csv and washer.csv

./disaggregate 10July.csv -s washer2.csv -s washer.csv -n washer

vertex1 = {min=2239.3 mean=2325.0 max=2396.8 stdev=32.1 numDataPoints=40}
vertex2 = {min= 2.5 mean= 127.5 max= 282.7 stdev=62.2 numDataPoints=48}
vertex3 = {min= 14.3 mean= 14.5 max= 14.7 stdev= 0.2 numDataPoints=24}
vertex4 = {min= 468.7 mean= 517.1 max= 553.7 stdev=33.2 numDataPoints= 8}

0

0.5

1

1.5

2

2.5

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

p
ow

er
(k

W
)

time (seconds)

Figure 6.18.: washer.csv signature. Note that the heater only comes on twice in this signature,
whilst it comes on three times in washer2.csv (figure 6.15).

0

0.5

1

1.5

2

2.5

3

3.5

10/07
11:30

10/07
11:45

10/07
12:00

10/07
12:15

10/07
12:30

10/07
12:45

10/07
13:00

10/07
13:15

10/07
13:30

10/07
13:45

p
ow

er
(k

W
)

time

Figure 6.19.: The solid blue shows the disaggregation algorithm’s estimation of where the
washer fingerprint is. It has successfully located the main elements of the washer signature.
This disaggregation output is almost identical to the output when trained with only
washer2.csv (figure 6.16), despite the significantly more complex power state graph produced
by trained on both washer2.csv and washer.csv (shown on next page).

Time Av likelihood Correct?

11:40:56 0.80 Y

The power state graph is on the next page.

66

6.4. Performance

vertex 0

min=0; 0
mean=0; 0
max=0; 0

stdev=0; 0

vertex 1

min=2195.6; 2239.3
mean=2290.28; 2324.98

max=2396.8; 2396.8
stdev=43.1037; 32.072

dMean=2281
 dSD=112.713
 dMin=2201.3
 dMax=2360.7

 durMean=192.5
 durSD=13.435

 durMin=183
 durMax=202

vertex 2

min=1.6; 2.5
mean=95.1432; 127.523

max=719.7; 282.7
stdev=66.4138; 62.1779

dMean=-2292.25
 dSD=31.4663
 dMin=-2314.5
 dMax=-2270

 durMean=261.5
 durSD=7.77817

 durMin=256
 durMax=267

(0,1)

dMean=-2284.2
 dSD=49.7803
 dMin=-2319.4
 dMax=-2249

 durMean=42.5
 durSD=2.12132

 durMin=41
 durMax=44

(0,1)
(1,2)
(2,1)

dMean=-2289.9
 dSD=0

 dMin=-2289.9
 dMax=-2289.9
 durMean=37

 durSD=0
 durMin=37
 durMax=37

(0,1)
(1,2)
(2,1)
(1,2)
(2,1)

dMean=-236.3
 dSD=0

 dMin=-236.3
 dMax=-236.3
 durMean=334

 durSD=0
 durMin=334
 durMax=334

(2,1)
(1,2)
(2,3)
(3,4)
(4,2)

dMean=2295.35
 dSD=1.06066
 dMin=2294.6
 dMax=2296.1
 durMean=335

 durSD=311.127
 durMin=115
 durMax=555

(0,1)
(1,2)

dMean=2264.1
 dSD=0

 dMin=2264.1
 dMax=2264.1

 durMean=2547
 durSD=0

 durMin=2547
 durMax=2547

(0,1)
(1,2)
(2,1)
(1,2)

vertex 3

min=1.8; 14.3
mean=105.154; 14.4583

max=699.5; 14.7
stdev=96.9814; 0.179169

dMean=-227.3
 dSD=0

 dMin=-227.3
 dMax=-227.3

 durMean=2652
 durSD=0

 durMin=2652
 durMax=2652

(1,2)
(2,1)
(1,2)
(2,1)
(1,2)

dMean=-215.7
 dSD=0

 dMin=-215.7
 dMax=-215.7

 durMean=2106
 durSD=0

 durMin=2106
 durMax=2106

(0,1)
(1,2)
(2,1)
(1,2)

dMean=-233.8
 dSD=0

 dMin=-233.8
 dMax=-233.8

 durMean=1026
 durSD=0

 durMin=1026
 durMax=1026

(0,1)
(1,2)
(2,1)
(1,2)
(2,3)

vertex 4

min=468.7; 468.7
mean=504.917; 517.05

max=538.9; 553.7
stdev=28.904; 33.189

dMean=531.8
 dSD=0

 dMin=531.8
 dMax=531.8

 durMean=716
 durSD=0

 durMin=716
 durMax=716

(2,1)
(1,2)
(2,1)
(1,2)
(2,3)

dMean=-383.1
 dSD=0

 dMin=-383.1
 dMax=-383.1
 durMean=11

 durSD=0
 durMin=11
 durMax=11

(1,2)
(2,1)
(1,2)
(2,3)
(3,4)

Figure 6.20.: Power state graph trained on washer.csv and washer2.csv
67

6. Final design iteration: graphs and spikes

Tumble drier

Trained on just tumble.csv

./disaggregate 10July.csv -s tumble.csv -n tumble

vertex1 = {min=2488.5 mean=2532.6 max=2620.7 stdev=41.6 numDataPoints=16}
vertex2 = {min= 241.8 mean= 242.1 max= 242.3 stdev= 0.2 numDataPoints=8}

Time Av likelihood Correct?

14:10:00 — False neg

vertex 0

min=0; 0
mean=0; 0
max=0; 0

stdev=0; 0

vertex 1

min=2423.6; 2488.5
mean=2478.23; 2532.35

max=2620.7; 2620.7
stdev=34.5783; 41.6019

dMean=2686
 dSD=0

 dMin=2686
 dMax=2686
 durMean=0
 durSD=0
 durMin=0
 durMax=0

vertex 2

min=78.9; 241.8
mean=240.837; 242.088

max=363; 242.3
stdev=30.2382; 0.195941

dMean=-2224.1
 dSD=0

 dMin=-2224.1
 dMax=-2224.1
 durMean=4901

 durSD=0
 durMin=4901
 durMax=4901

(0,1)

dMean=2414.1
 dSD=0

 dMin=2414.1
 dMax=2414.1
 durMean=119

 durSD=0
 durMin=119
 durMax=119

(0,1)
(1,2)

0

0.5

1

1.5

2

2.5

3

0 4000 8000

p
ow

er
(k

W
)

time (seconds)

The system has failed to represent the signature (shown on the right) as a power state graph
(shown on the left) and hence failed to detect the tumble drier’s fingerprint in the aggregate data.
Note a fundamental flaw in this power state graph: the off vertex lacks an inbound edge. Apparently
the tumble drier never turns off! This is almost certainly because the spike which represents the
transition back to the offvertex did not make it into the top 10 spikes (defined by the parameter
TOP SLICE SIZE) because, as can be seen in the signature above, the tumble drier has many,
many large spikes.

68

6.4. Performance

6.4.2. 3 days of aggregate data (earlyJuly.csv)

This is data was not been used during development. Instead of providing a line-by-line account,
just the scores will be reported. In all cases, the algorithm will be trained on every signature file
available (2 for the kettle, 1 for the toaster, 5 for the washing machine and 1 for the tumble drier).

% hits failed to detect false positives

Toaster 100 % (6 out of 6)

Kettle 100 % (28 out of 28)

Washer 100 % (4 out of 4) 1

Tumble 0 % (0 out of 2) 2

6.4.3. 10 days of aggregate data (earlyAugust.csv)

As before, in all cases, the algorithm will be trained on every signature file available (2 for the
kettle, 2 for the toaster, 5 for the washing machine and 1 for the tumble)

% hits failed to detect false positives

Toaster 100 % (5 out of 5)

Kettle 100 % (25 out of 25) 6

Washer 100 % (2 out of 2) 6

Tumble 0 % (0 out of 3) 3

6.4.4. Conclusions

Broadly, I’m pleased with the performance of the system. The “power state graph” approach does
appear to be a successful strategy for abstracting raw device signatures and for locating those
signatures in aggregate data.

The algorithm worked very swiftly (within around 1 second) for all disaggregation tasks ex-
cept the final washing machine disaggregation task for the 10-day-aggregate-data (which took 20
minutes!). It appears that this run was very long because the algorithm fails to correctly determine
how washer5 finishes, probably because the spike which indicates a transition to “off” does not
come within the top 10 spikes for washer5. Increasing TOP SLICE SIZE (section 6.3.10) fixes this
somewhat but this is definitely not the correct behaviour.

Overall, the system does appear capable of learning a “power state graph” from several signatures
and of locating those device fingerprints within aggregate data.

69

7. Conclusions and future work

7.1. Limitations

Complete failure to deal with devices with rapidly changing signatures. The disaggregation al-
gorithm works well for the kettle, toaster and washer but fails for the tumble drier. The
tumble drier causes yet more headaches: In the 10 day aggregate data, all the false positives
for the kettle and for the washer were all within tumble drier fingerprints (the tumble drier’s
heater uses a similar amount of power to the kettle; see figure 7.1). Supposedly this is because
the drier has a very “choppy” signature (figure 7.1) which confuses the training algorithm
(recall that the training algorithm creates statistics for the 8 samples immediately before and
after each “4signature spike” and rejects a spike if these “pre- / post-spike statistics” have
an unacceptably high standard deviation). This is a serious flaw, not least because tumble
driers are amongst the most energy-hungry devices in the home (a single run uses around
3.5 kWh).

PowerStateGraph.cpp and .h are large files (approximately 1,200 and 400 lines respectively).
The PowerStateGraph class could be broken into multiple smaller classes. In particular,
the code for training a power state graph and the code for disaggregating an AggregateData

signal from this graph could be separated into 2 classes: a PowerStateGraph class for creating
a power state graph and a Disaggregate class which wraps a “disaggregation tree”. The
“rolling edge history” could potentially also be its own class.

“Edge histories” are a fairly blunt instrument for constraining the power state graph. A better
alternative may be to implement a system which only limits the number of times the disag-
gregation algorithm is permitted to spin round cyclical sections of the power state graph.

This approach will never be able to disaggregate the “vampire power” load. “vampire power”
is the baseline that a building uses when the house appears to be “doing nothing”. This
load is typically around 50-200 Watts, continually drawn every hour of the day, every day of
the year. Because this load is constant, the total contribution to yearly energy consumption
is often quite high (maybe around 20 %). This load is largely attributable to devices which
continue to draw power even when in standby and devices which genuinely never turn off,
like alarm systems. It would be very useful to know exactly which devices contribute to the
vampire power load. Unfortunately, none of the disaggregation techniques attempted during
this project have any hope of disaggregating the vampire power load. The vampire load is
always on, so it never produces a “spike in ∆aggregate”, so it is invisible to my disaggregation
algorithm.

This approach is likely to struggle with loads which vary continuously. For example, this approach
is unlikely to be able to disaggregate a dimmable lamp.

7.2. Other applications of this work

The amount of energy consumed by IT infrastructure is growing rapidly. It would be interesting
to see if this disaggregation algorithm would be able to determine how much power is consumed
by each component in a computer or a data centre.

71

7. Conclusions and future work

0

500

1000

1500

2000

2500

3000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

p
ow

er
(W

at
ts

)

time (seconds)

Figure 7.1.: Tumble drier signature

7.3. Further work

7.3.1. Combine all three approaches

0

0.2

0.4

0.6

00:50 00:55 01:00

p
ow

er
(k

W
)

hours:minutes

Figure 7.2.: Cropped washing machine signature
showing two interesting “ramps” at 0:51 & 1:02

Three broad approaches were explored during
this project (1. least mean squares, 2. determ-
ining “power states” by examining the signa-
ture’s histogram and 3. the “graphs and spikes”
approach). These approaches could be com-
bined. For example, the “graphs and spikes”
approach completely fails to take advantage of
highly discriminative features like the interest-
ing “ramps” in the washing machine signature
(figure 7.2). Perhaps a least mean squares ap-
proach could be deployed for short waveforms
like this ramp. It should be relatively straight
forward to build an LMS algorithm which is
robust against background noise by using the
LMS algorithm to match a waveform in sections
(this idea was suggested by my supervisor, Dr
Knottenbelt).

7.3.2. Machine learning approaches

Most modern cameras can recognise faces and distinguish between individuals. This “face recogni-
tion” problem appears to be a considerably harder problem than disaggregation problem. It may
be interesting to survey existing machine learning algorithms and attempt to apply them to the
disaggregation problem.

72

7.3. Further work

7.3.3. More efficient implementation & parallelisation

The focus during this project has been to develop a set of algorithms. My priority when writing
the code was to create code which works robustly. As such, many of the algorithms are not
optimally implemented. For example, several functions do a lot of sanity-checking which would not
be necessary once the code is fully debugged.

All the code is single-threaded. There are many opportunities for using multiple CPU / GPU
threads or single-instruction-multiple-data (SIMD) instructions.

7.3.4. Try a simpler approach based on non-invasive load monitoring

We discussed the “non-invasive load monitoring” (NILM) algorithm in the Introduction. The NILM
algorithm was developed for use where measurements of real and reactive power are available and
has not, to my knowledge, been applied to the disaggregation of home energy monitor data (which
lacks information about real versus reactive power).

The NILM algorithm starts by looking for changes in the aggregate data and then pairs changes
of equal magnitude but opposite sign. The very last step of the NILM algorithm is to compare
these pairs of changes to a database of learnt device signatures. In contrast to the NILM approach,
my disaggregation algorithm looks for learnt signatures as the first and only thing it does; the
NILM algorithm instead simply looks for equal but opposite spikes first and only then accesses its
database of learnt signatures. A more literal port of the NILM algorithm to home energy monitor
data may be more efficient. However, it may also be too poorly constrained to cope with the
relatively course data provided by home energy monitors. The advantage of my “graph and spikes”
approach is that the disaggregation algorithm only looks for events which are relevant to the device
currently being disaggregated.

7.3.5. Remove deprecated sections of code

This project has been an experiment and, as such, the design has evolved over the course of the
code’s construction. I deliberately did not remove functions belonging to previous design iterations
for two reasons: firstly, when I started out on a new design modification, I could not be sure that it
would work better than the previous design iteration. I did start a new git branch for the “Spikes
and Graphs” design but this has just become my “master” branch. Secondly, I wanted to keep all
my work in a single code base so I could refer to functions from previous design iterations in the
write-up.

The end result is that a fair amount of the current code-base is simply not used by the “Spikes
and Graphs” design, hence the code could be slimmed down.

7.3.6. Capture relationships between devices

Many manufacturers produce household devices. Whilst it’s likely that every kettle1 behaves almost
identically, it’s highly likely that devices like washing machines vary greatly in their behaviour. The
disaggregation system should be able to capture the fact that each washing machine is a member
of the same class of device.

7.3.7. Capture the probability that a device is active at a given time of day

Kettles and toasters tend to be used at meal times; TVs tend to be used in the evening; fridges
run constantly. The disaggregation system could record a probability that each device will be on
at a specific time. This probability would be used to refine the disaggregation system’s likelihood
calculation.

1Assume we’re only considering devices made for a 230 Volt, 13 Amp domestic mains supply like the UK’s. The UK’s
domestic mains supply can deliver up to 2.9 kW(= 230V ×13A) to each device whilst a North American 120 Volt,
15 Amp socket can deliver a maximum of 1.8 kW. British kettles are more powerful than American kettles!

73

7. Conclusions and future work

7.3.8. Ultimate aim: to build a smart meter disaggregation web service

The ultimate aim is to develop this software into a web service which would work something like
this: users would send the service their aggregate signal as a flat data file and the service would
return an XML file listing which device signatures were found in the aggregate signal, their start
times, duration and energy consumption. Users could then use this information to help them
manage their energy consumption.

Disaggregated domestic energy information should be considered private information because it
describes when you’re at home, when you’re watching TV, when you’re having a power shower,
when you get up in the morning, when you go to bed etc. So the transfer of data to and from the
disaggregation service must be encrypted and secure.

If the system was thoroughly optimised and parallelised then the web service could be run on
a single server while the user base was small, or perhaps it could be run on an elastic computing
service like Amazon’s EC2 service2.

There are several reasons why it might be nice to put a disaggregation service “in the cloud”:

A single, shared library of device signatures. The first handful of users would have to invest time
in establishing a shared library of device signatures, but those users would see instant personal
benefit from doing so because their work will result in the service being more useful to them.
Once the library covers the majority of household devices, new users would not have to train
the system, they can use the service simply as consumers.

Energy information already exists in the cloud. Many energy-related web services and Internet-enabled
devices already exist. Hence transmitting energy data to the disaggregation service will, in
some cases, be as simple as writing a small utility to ingest data from an existing service. For
example, Pachube.com (pronounced “patch bay”) calls itself a “Real-Time Open Data Web
Service for the Internet of Things”. It offers a way to “patch” sensors to actuators across the
Internet. It also offers tools to produce live graphs of sensor data. Some people already send
their smart meter data to Pachube. The Current Cost Bridge “bridges” the Current Cost
smart meter to a wired Ethernet Internet connection to automatically transmit smart meter
data3 to Current Cost’s web service (using Pachube for backend data management [1]). An-
other smart meter called the “AlertMe”4 transmits data to AlertMe’s website roughly every
10 seconds; AlertMe provide an API for access to the data.

How much energy do similar appliances use? At the very start of this report, we considered a con-
sumer who has just received a painfully expensive electricity bill. She might find it especially
useful to know, for example, that her ageing fridge uses x % more energy than the average
fridge and hence a new fridge will pay for itself in y months. Providing a disaggregation
service in the cloud would allow this type of comparative data to be collected easily.

How much energy do my friends use? With a disaggregation service in the cloud, it would be pos-
sible to make smart meter disaggregation data “social” and to turn energy saving into a
social game (of course, users would require complete control over which friends see what
data). Users could compare their energy usage with their friends’ usage and compete to see
who can save the most energy.

2aws.amazon.com/ec2
3Unfortunately the Current Cost Bridge does not transmit the 6-second resolution data available from the Current

Cost’s USB connection. Instead the bridge sums and averages the 6-second data over a 5 minute period and
transmits this sum and average every 5 minutes [2]. This makes the bridge’s data less useful for disaggregation
than the 6-second data available from the Current Cost’s USB connection. However, there are plenty of altern-
ative ways to transmit the Current Cost data to the Internet (e.g. github.com/Floppy/currentcost-daemon or
community.pachube.com/currentcost).

4alertme.com/products/energy

74

http://aws.amazon.com/ec2/
https://pachube.com/
http://www.currentcost.com/product-bridge.html
http://www.alertme.com/products/energy
http://aws.amazon.com/ec2
https://github.com/Floppy/currentcost-daemon
http://community.pachube.com/currentcost
http://www.alertme.com/products/energy

7.4. Conclusion

7.4. Conclusion

Let us summarise what has and what has not been achieved in this project. On the down side, the
system fails to learn a valid representation for the tumble drier which is unfortunate because the
drier is one of the most power-hungry domestic devices. On the positive side, we have designed
and implemented a novel disaggregation system which successfully learns valid representations for
three out of the four tested devices. The system rapidly and successfully disaggregates these three
devices from noisy aggregate data.

This design has several attractive features: 1) it handles complex devices whose signatures contain
power state sequences which repeat an arbitrary number of times; 2) it is probabilistic; 3) a power
state graph can be learnt from one or more signatures and 4) the design estimates the energy
consumed by each device activation.

Has the project met the original aims? Whilst this is not production-ready system, it is a
productive contribution towards that goal. The original aim was to design and build a working
disaggregation system, which we have achieved.

75

A. User guide

The system described in this report is implemented as a command-line utility called disaggregate.
An x86-64 Linux executable is included with the submitted archive and should run “out of the box”
provided the runtime dependencies listed below are available (disaggregate compiles and runs
fine on the DoC lab machines). Running ./disaggregate without any arguments will produce the
standard help:

$./disaggregate

SMART METER DISAGGREGATION TOOL

Signature file(s) must be specified using the -s option.

Usage: ./disaggregate AGGREGATE DATA FILE -s SIGNATURE [OPTIONS]

Learns the salient features of a single device

from the SIGNATURE file(s) and then searches for

this device in the AGGREGATE DATA FILE.

Allowed options:

Generic options:

-h [--help] Produce help message

-v [--version] Print version string

-c [--config] arg (=config/disaggregate.conf)

Configuration filename.

Configuration options:

-s [--signature] arg Device signature file (without path). Use

multiple -s options to specify multiple signature

files. e.g. -s FILE1 -s FILE2 Options specified

on command line will be combined with options

from the config file.

-n [--device-name] arg The device name e.g. "kettle".

-o [--keep-overlapping] Do not remove overlapping candidates during

disaggregation.

--lms Use Least Mean Squares approach for matching

signature with aggregate data.

--histogram Use histogram approach. Full disaggregation is not

implemented for this approach hence an aggregate

file need not be supplied

--cropfront arg The number of samples to crop off the front of the

signature (only works with LMS or histogram).

--cropback arg The number of samples to crop off the back of the

signature (only works with LMS or histogram).

Example usage:

./disaggregate 10July.csv -s kettle.csv -s kettle2.csv -n kettle

A.1. Input files

Signature files are stored as .csv files in data/input/watts up. These files have a single column
recording the power consumption of the device sampled once a second. Several signature files are
provided:

77

A. User guide

kettle.csv

kettle2.csv

toaster.csv

toaster2.csv

tumble.csv

washer.csv

washer2.csv

washer3.csv

washer4.csv

washer5.csv

Aggregate data files are stored as .csv files in data/input/current cost. These files have two
columns separated by a tab. The first column records a UNIX timestamp and the second column
records the power consumption. Several aggregate data files are provided:

10July.csv

earlyJuly.csv

earlyAugust.csv

When calling ./disaggregate from the command line, do not prefix the file names with the direct-
ories; the directories are hard-coded.

A.2. Output files

All output files are sent to the data/output directory.

A.3. Configuration file

The command-line options for specifying signatures, aggregate data and device name can be sup-
plied in the config file config/disaggregate.conf. For example:

device-name = washer

signature = washer.csv

signature = washer2.csv

aggdata = 10July.csv

The list of signature files specified in the config file and on the command line are merged into a
single list.

A.4. GNUplot templates

The GNUplot template files live in the config/ directory. See chapter 5.

A.5. Runtime dependencies

• sed

• gnuplot

• graphviz

A.6. Compiling from source

Compiling from source should be as simple as running make (the software was developed using gcc
version 4.5.2).

78

A.7. Generating Doxygen documentation

A.6.1. Compilation dependencies

This project makes use of several Boost libraries. Boost version 1.42.0.1 was used during develop-
ment. The specific libraries are:

Boost String Algorithms Library boost.org/doc/libs/1 42 0/doc/html/string algo.html

Boost Graph Library boost.org/doc/libs/1 42 0/libs/graph/doc/index.html

Boost Unit Test Framework boost.org/doc/libs/1 42 0/libs/test/doc/html/index.html

Boost Program Options boost.org/doc/libs/1 42 0/doc/html/program options - must be compiled
from source and explicitly linked to. Details: boost.org/doc/libs/1 42 0/more/getting started/unix-
variants.html#easy-build-and-install

A.7. Generating Doxygen documentation

1. change directory to doc

2. run doxygen (you may have to install doxygen first! It is available from doxygen.org)

3. Now point a web browser at doc/html/index.html

A.8. Running unit tests

The full suite of tests can be run with make testAll. Alternatively, individual tests can be run
with make <testtarget> where testtarget is one of the following: ArrayTest, GNUplotTest,

UtilsTest, StatisticTest, PowerStateGraphTest, AggregateDataTest.

79

http://www.boost.org/doc/libs/1_42_0/doc/html/string_algo.html
http://www.boost.org/doc/libs/1_42_0/libs/graph/doc/index.html
http://www.boost.org/doc/libs/1_42_0/libs/test/doc/html/index.html
http://www.boost.org/doc/libs/1_42_0/doc/html/program_options
http://www.boost.org/doc/libs/1_42_0/more/getting_started/unix-variants.html#easy-build-and-install
http://www.boost.org/doc/libs/1_42_0/more/getting_started/unix-variants.html#easy-build-and-install
http://doxygen.org

B. Further (simplified) code listings

B.1. Training code

Please note that this code listing has been simplified compared to the real code.

PSGraph : : v e r t e x d e s c r i p t o r PowerStateGraph : : updateOrInsertVertex (
const Signature& s ig ,
const S t a t i s t i c <Sample t>& postSpikePowerState)

{
bool f oundS imi la r ; // re turn param f o r mostSimi larVertex ()
PSGraph : : v e r t e x d e s c r i p t o r ver tex =

mostSimi larVertex (&foundSimi lar , postSpikePowerState) ;
// mostSimi larVertex () uses a T−Test to f i n d the powerStateGraph
// ver tex with a mean most s i m i l a r to postSpikePowerState .

i f (foundS imi la r) {
i f (ver tex != o f fVe r t ex) // Update an e x i s t i n g ver tex

powerStateGraph [ver tex] . postSp ike . update (postSpikePowerState) ;
} else {

// Add a new vertex
ver tex = add vertex (powerStateGraph) ;
powerStateGraph [ver tex] . postSp ike = postSpikePowerState ;

}
return ver tex ;

}

PSGraph : : v e r t e x d e s c r i p t o r PowerStateGraph : : mostSimi larVertex (
bool ∗ succes s , // re turn parameter . Did we f i n d a s a t i s f a c t o r y match?
const S t a t i s t i c <Sample t>& stat , // s t a t to f i n d in graph v e r t i c e s
const double ALPHA = 0.00000005 // s i g n i f i c a n c e l e v e l

) const {
PSGraph : : v e r t e x d e s c r i p t o r ver tex =0;
std : : pa ir<PSG vertex i ter , PSG vertex i ter> vp ;
double tTest , highestTTest =0;

// Find the best f i t
for (vp = v e r t i c e s (powerStateGraph) ; vp . f i r s t != vp . second ; ++vp . f i r s t) {

tTest = s t a t . tTest (powerStateGraph [∗ vp . f i r s t] . postSp ike) ;
i f (tTest > highestTTest) {

highestTTest = tTest ;
ver tex = ∗vp . f i r s t ;

}
}
// Check whether the bes t f i t i s s a t i s f a c t o r y
∗ s u c c e s s = (highestTTest > (ALPHA/2)) ; // T−Test
return ver tex ;

}

81

B. Further (simplified) code listings

void PowerStateGraph : : updateOrInsertEdge (
const PSGraph : : v e r t e x d e s c r i p t o r& beforeVertex ,
const PSGraph : : v e r t e x d e s c r i p t o r& af te rVertex ,
const s i z e t samplesS inceLastSpike ,
const double sp ikeDe l ta)

{
PSGraph : : e d g e d e s c r i p t o r ex i s t ingEdge , newEdge ;
bool edgeExist sAlready ; // return param from boost : : edge ()
t i e (ex i s t ingEdge , edgeExist sAlready) =

boost : : edge (beforeVertex , a f t e rVertex , powerStateGraph) ;

i f (edgeExist sAlready) {
// update e x i s t i n g edge ’ s s t a t s
powerStateGraph [ex i s t ingEdge] . d e l t a . update (sp ikeDe l ta) ;
powerStateGraph [ex i s t ingEdge] . durat ion . update (samplesS inceLastSp ike) ;

} else {
// add a new edge
t i e (newEdge , edgeExis t sAlready) =

boost : : add edge (beforeVertex , a f t e rVertex , powerStateGraph) ;
powerStateGraph [newEdge] . d e l t a = S t a t i s t i c <double>(sp ikeDe l ta) ;
powerStateGraph [newEdge] . durat ion =

S t a t i s t i c <s i z e t >(samplesS inceLastSpike) ;
}

}

B.2. Disaggregation code

Please note that this code listing has been simplified compared to the real code.

const PowerStateGraph : : F inge rp r in t PowerStateGraph : : initTraceToEnd (
const AggregateData : : FoundSpike& spike ,
const s i z e t d e v i c e S t a r t) // The p o s s i b l e time the dev i c e s t a r t e d

{
DisagTree disagTree ;

/∗ Omitted to save space :
∗ add an ” o f fVe r t ex ” to disagTree .
∗ add a ” f i r s t V e r t e x ” r e p r e s e n t i n g f i r s t non−zero power s t a t e . ∗/

// add an edge between d i sagOf fVertex and f i r s t V e r t e x
add edge (disagOffVertex , // source ver tex

f i r s t V e r t e x , // t a r g e t ver tex
sp ike . l i k e l i h o o d , // edge value
disagTree) ;

// now r e c u r s i v e l y t r a c e from t h i s edge to the end
traceToEnd (&disagTree , f i r s t V e r t e x , d e v i c e S t a r t) ;

// f i n d route through the t r e e with h i ghe s t average edge l i k e l i h o o d s
f indListOfPathsThroughDisagTree (disagTree , d i sagOf fVertex) ;

// Return the most con f i d en t path through the disagTree
return f indBestPath (disagTree , d e v i c e S t a r t) ;

82

B.2. Disaggregation code

}

void PowerStateGraph : : traceToEnd (
DisagTree ∗ disagTree p , // input and output parameter
const DisagTree : : v e r t e x d e s c r i p t o r& disagVertex ,
const s i z e t prevTimestamp // timestamp o f prev ious ver tex

) const {
l i s t <AggregateData : : FoundSpike> foundSpikes ;

// A handy r e f e r e n c e to make the code more readab le
DisagTree& disagTree = ∗ disagTree p ;

// base case
i f (d i sagTree [d i sagVertex] . psgVertex == of fVer t ex)

return ;

// For each out−edge from disagVertex . psgVertex , r e t r i e v e a l i s t o f
// s p i k e s which match and c r e a t e a new DisagTree ver tex f o r each match .
PSG out edge i te r p sg ou t i , psg out end ;
t i e (p sg ou t i , psg out end) =

out edges (d i sagTree [d i sagVertex] . psgVertex , powerStateGraph) ;

for (; p s g o u t i != psg out end ; p s g o u t i++) {
s i z e t begOfSearchWindow , endOfSearchWindow ;
const s i z e t WINDOWFRAME = 8 ; // number o f seconds to widen window by
s i z e t e = powerStateGraph [∗ p s g o u t i] . durat ion . nonZeroStdev () ;

begOfSearchWindow = (disagTree [d i sagVertex] . timestamp +
powerStateGraph [∗ p s g o u t i] . durat ion . min)− WINDOWFRAME − e ;

endOfSearchWindow = (disagTree [d i sagVertex] . timestamp +
powerStateGraph [∗ p s g o u t i] . durat ion . max) + WINDOWFRAME + e ;

// ∗∗∗//
// get a l i s t o f candidate s p i k e s matching t h i s PSG−out−edge //
foundSpikes . c l e a r () ;
foundSpikes = aggData−>f i ndSp ike (

powerStateGraph [∗ p s g o u t i] . de l ta , // sp ike s t a t s
begOfSearchWindow , endOfSearchWindow) ;

// ∗∗∗//
// f o r each candidate spike , c r e a t e a new vertex in disagTree //
// and r e c u r s i v e l y t r a c e t h i s to the end //
for (sp ike=foundSpikes . begin () ; sp ik e != foundSpikes . end () ; sp ike++) {

double normal isedLike l ihoodForTime =
powerStateGraph [∗ p s g o u t i] . durat ion . norma l i s edL ike l ihood (

spike−>timestamp − disagTree [d i sagVertex] . timestamp) ;

// merge p r o b a b i l i t y f o r time and f o r sp ike d e l t a
double avLike l ihood =

(normal isedLike l ihoodForTime + spike−>l i k e l i h o o d) / 2 ;

83

B. Further (simplified) code listings

// c r e a t e new vertex
DisagTree : : v e r t e x d e s c r i p t o r newVertex=add vertex (d isagTree) ;

// add d e t a i l s to newVertex
disagTree [newVertex] . timestamp = spike−>timestamp ;

// get ver tex that ∗ p s g o u t i po in t s to
disagTree [newVertex] . psgVertex = t a r g e t (∗ psg out i , powerStateGraph) ;

// c r e a t e new edge
DisagTree : : e d g e d e s c r i p t o r newEdge ;
bool ex i s t ingEdge ;
t i e (newEdge , ex i s t ingEdge) =

add edge (disagVertex , newVertex , avLike l ihood , d i sagTree) ;

// r e c u r s i v e l y t r a c e to end .
traceToEnd (disagTree p , newVertex , d i sagTree [d i sagVertex] . timestamp) ;

}
}

}

void PowerStateGraph : : f indListOfPathsThroughDisagTree (
const DisagTree& disagTree ,
const DisagTree : : v e r t e x d e s c r i p t o r vertex ,
const Likel ihoodAndVertex lav ,
l i s t <PowerStateGraph : : Likel ihoodAndVertex> path
// D e l i b e r a t e l y ca l l ed−by−value because we want a copy .

) {
path . push back (lav) ;

// base case = we ’ re at the end
i f (ver tex != 0) {

l i s tO fPa t h s . push back (path) ;
return ;

}

// i t e r a t e through each out−edge
D i s a g o u t e d g e i t e r o u t e i , out e end ;
t i e (o u t e i , out e end) = out edges (vertex , d i sagTree) ;

for (; o u t e i != out e end ; o u t e i++) {
downstreamVertex = t a r g e t (∗ o u t e i , d i sagTree) ;
Likel ihoodAndVertex nextLav ;
nextLav . ver tex = downstreamVertex ;
nextLav . l i k e l i h o o d = disagTree [∗ o u t e i] ;

// we haven ’ t h i t the end yet so r e c u r s i v e l y f o l l o w t r e e downwards .
f indListOfPathsThroughDisagTree (

disagTree , downstreamVertex , nextLav , path) ;
}
return ;

}

84

C. Software engineering tools used

• Coding in C++ (using some C++0x features implemented in gcc 4.4.3 which is the gcc version
install on the DoC machines)

• Code documentation: Doxygen / Javadoc

• Exploring and visualising data in GNUplot, MatLab and Open Office Calc (which does a
better job of interpreting dates in imported CSV files than MatLab)

• IDE: Eclipse 3.6.2 with CDT 7.0.2

• Debugger: GDB (using Eclipse as the interface to GDB)

• make

• Unit testing framework: Boost.Test (with Eclipse Parser)

• Revision control: git (which also works as a simple backup system; the git repository on my
laptop is cloned to my DoC folder)

• Graph visualisation: graphviz

85

Bibliography

[1] Current cost’s ’Bridge’ uses pachube for backend data management | pachube.community.
[blog post] Retrieved 20 Aug 2011. URL: http://community.pachube.com/node/436.

[2] How the current cost bridge posts data. Current Cost Technical Blog. [blog post] Retrieved
20 Aug 2011. URL:
http://currentcost.posterous.com/how-the-current-cost-bridge-posts-data.

[3] OFGEM. Renewables Obligation. [Web page] Retrieved 28 Aug 2011. URL: http://www.
ofgem.gov.uk/Sustainability/Environment/RenewablObl/Pages/RenewablObl.aspx.

[4] Trends in carbon dioxide sampled from Mauna Loa, US National Oceanic & Atmospheric
Administration Research website. Retrieved 24 Aug 2011. URL:
http://www.esrl.noaa.gov/gmd/ccgg/trends/.

[5] Fourth assessment report: Climate change 2007 (AR4). Technical report, IPCC, 2007. URL:
http://www.ipcc.ch/publications_and_data/publications_and_data_reports.shtml.

[6] UK climate change act, November 2008. UK Parliament. URL:
http://www.legislation.gov.uk/ukpga/2008/27/contents.

[7] Synthesis report: Climate change, global risks, challenges & decisions. Technical report,
International Alliance of Research Universities: Australian National University, ETH Zürich,
National University of Singapore, Peking University, University of California - Berkeley,
University of Cambridge, University of Copenhagen, University of Oxford, The University of
Tokyo, Yale University, March 2009. URL:
http://www.pik-potsdam.de/news/press-releases/files/synthesis-report-web.pdf.

[8] Centrica Plc, March 2010. British Gas Plans Two Million Smart Meters in British homes by
2012 [Press release]. URL:
http://www.centrica.com/index.asp?pageid=39&newsid=1970.

[9] Smart meter implementation strategy prospectus. Technical report, DECC, Ofgem/Ofgem
E-Serve, July 2010. URL: http://www.ofgem.gov.uk/e-serve/sm/Documentation/
Documents1/Smart%20metering%20-%20Prospectus.pdf.

[10] White paper on smart grids - recommendations of the ICT industry for an accelerated
SmartGrids 2020 deployment. Technical report, Digital Europe, June 2010. URL:
http://www.digitaleurope.org/fileadmin/user_upload/document/White_Paper_on_

Smart_1277195377.pdf.

[11] World energy outlook. Technical report, International Energy Agency, 2010. URL:
http://www.iea.org/weo/docs/weo2010/WEO2010_ES_English.pdf.

[12] Arctic sea ice thickness. US Naval Oceanographic Office (NAVO) website, September 2011.
URL: http://www7320.nrlssc.navy.mil/hycomARC/navo/arcticictnnowcast.gif.

[13] Climate Change Levy. HMRC website, 2011. URL: http:
//customs.hmrc.gov.uk/channelsPortalWebApp/channelsPortalWebApp.portal?_nfpb=

true&_pageLabel=pageExcise_InfoGuides&propertyType=document&id=HMCE_CL_001174.

87

http://community.pachube.com/node/436
http://currentcost.posterous.com/how-the-current-cost-bridge-posts-data
http://www.ofgem.gov.uk/Sustainability/Environment/RenewablObl/Pages/RenewablObl.aspx
http://www.ofgem.gov.uk/Sustainability/Environment/RenewablObl/Pages/RenewablObl.aspx
http://www.esrl.noaa.gov/gmd/ccgg/trends/
http://www.ipcc.ch/publications_and_data/publications_and_data_reports.shtml
http://www.legislation.gov.uk/ukpga/2008/27/contents
http://www.pik-potsdam.de/news/press-releases/files/synthesis-report-web.pdf
http://www.centrica.com/index.asp?pageid=39&newsid=1970
http://www.ofgem.gov.uk/e-serve/sm/Documentation/Documents1/Smart%20metering%20-%20Prospectus.pdf
http://www.ofgem.gov.uk/e-serve/sm/Documentation/Documents1/Smart%20metering%20-%20Prospectus.pdf
http://www.digitaleurope.org/fileadmin/user_upload/document/White_Paper_on_Smart_1277195377.pdf
http://www.digitaleurope.org/fileadmin/user_upload/document/White_Paper_on_Smart_1277195377.pdf
http://www.iea.org/weo/docs/weo2010/WEO2010_ES_English.pdf
http://www7320.nrlssc.navy.mil/hycomARC/navo/arcticictnnowcast.gif
http://customs.hmrc.gov.uk/channelsPortalWebApp/channelsPortalWebApp.portal?_nfpb=true&_pageLabel=pageExcise_InfoGuides&propertyType=document&id=HMCE_CL_001174
http://customs.hmrc.gov.uk/channelsPortalWebApp/channelsPortalWebApp.portal?_nfpb=true&_pageLabel=pageExcise_InfoGuides&propertyType=document&id=HMCE_CL_001174
http://customs.hmrc.gov.uk/channelsPortalWebApp/channelsPortalWebApp.portal?_nfpb=true&_pageLabel=pageExcise_InfoGuides&propertyType=document&id=HMCE_CL_001174

Bibliography

[14] Digest of UK energy statistics (DUKES) chapter 5: Electricity. Technical report, UK
Department for Energy and Climate Change, 2011. URL:
http://www.decc.gov.uk/assets/decc/11/stats/publications/dukes/

2307-dukes-2011-chapter-5-electricity.pdf.

[15] Energy price statistics. Technical report, Department of Energy and Climate Change,
webpage, 2011. URL:
http://www.decc.gov.uk/en/content/cms/statistics/energy_stats/prices/.

[16] GISTEMP surface temperature analysis: Analysis graphs and plots, 2011. NASA Goddard
Institute Of Space Studies website. URL: http://data.giss.nasa.gov/gistemp/graphs/.

[17] Inflation report. Technical report, Bank of England, London, August 2011. URL:
www.bankofengland.co.uk/publications/inflationreport/ir11aug4.ppt.

[18] Polarstern reaches north pole. Arctic Sea Ice Blog, August 2011. URL:
http://neven1.typepad.com/blog/2011/08/polarstern-reaches-north-pole.html.

[19] Shale gas. Technical report, British Geological Survey website, 2011. URL:
http://www.bgs.ac.uk/research/energy/shaleGas.html.

[20] Statistical review of world energy. Technical report, BP, June 2011. URL:
http://www.bp.com/sectionbodycopy.do?categoryId=7500&contentId=7068481.

[21] UK climate change sustainable development indicator: 2010 greenhouse gas emissions,
provisional figures and 2009 greenhouse gas emissions, final figures by fuel type and end-user.
Technical report, UK Department of Energy and Climate Change, March 2011. URL:
http://www.decc.gov.uk/assets/decc/Statistics/climate_change/

1515-statrelease-ghg-emissions-31032011.pdf.

[22] Unconventional gas and implications for the LNG market - FACTS global energy. In Pacific
Energy Summit, Jakarta, Indonesia, February 2011. URL:
http://www.nbr.org/downloads/pdfs/eta/PES_2011_Facts_Global_Energy.pdf.

[23] Dave Abrahams. Want speed? pass by value. - C++Next, August 2009. URL:
http://cpp-next.com/archive/2009/08/want-speed-pass-by-value/.

[24] Arctic Climate Impact Assessment, Arctic Monitoring Programme, Assessment, Program for
the Conservation of Arctic Flora Fauna, , and International Arctic Science Committee.
Arctic climate impact assessment. Cambridge University Press, 2005.

[25] Ken Caldeira and Michael E. Wickett. Oceanography: Anthropogenic carbon and ocean pH.
Nature, 425(6956):365, 2003. URL: http://dx.doi.org/10.1038/425365a,
doi:10.1038/425365a.

[26] Anny Cazenave. How fast are the ice sheets melting? Science (New York, N.Y.),
314(5803):1250–1252, November 2006. PMID: 17053111. doi:10.1126/science.1133325.

[27] John A. Church and Neil J. White. A 20th century acceleration in global sea-level rise.
Geophysical Research Letters, 33:4 PP., January 2006. URL:
http://www.agu.org/journals/ABS/2006/2005GL024826.shtml.

[28] W. Dansgaard, S. J. Johnsen, H. B. Clausen, D. Dahl-Jensen, N. S. Gundestrup, C. U.
Hammer, C. S. Hvidberg, J. P. Steffensen, A. E. Sveinbjornsdottir, J. Jouzel, and G. Bond.
Evidence for general instability of past climate from a 250-kyr ice-core record. Nature,
364(6434):218–220, July 1993. doi:10.1038/364218a0.

88

http://www.decc.gov.uk/assets/decc/11/stats/publications/dukes/2307-dukes-2011-chapter-5-electricity.pdf
http://www.decc.gov.uk/assets/decc/11/stats/publications/dukes/2307-dukes-2011-chapter-5-electricity.pdf
http://www.decc.gov.uk/en/content/cms/statistics/energy_stats/prices/
http://data.giss.nasa.gov/gistemp/graphs/
www.bankofengland.co.uk/publications/inflationreport/ir11aug4.ppt
http://neven1.typepad.com/blog/2011/08/polarstern-reaches-north-pole.html
http://www.bgs.ac.uk/research/energy/shaleGas.html
http://www.bp.com/sectionbodycopy.do?categoryId=7500&contentId=7068481
http://www.decc.gov.uk/assets/decc/Statistics/climate_change/1515-statrelease-ghg-emissions-31032011.pdf
http://www.decc.gov.uk/assets/decc/Statistics/climate_change/1515-statrelease-ghg-emissions-31032011.pdf
http://www.nbr.org/downloads/pdfs/eta/PES_2011_Facts_Global_Energy.pdf
http://cpp-next.com/archive/2009/08/want-speed-pass-by-value/
http://dx.doi.org/10.1038/425365a
http://dx.doi.org/10.1038/425365a
http://dx.doi.org/10.1126/science.1133325
http://www.agu.org/journals/ABS/2006/2005GL024826.shtml
http://dx.doi.org/10.1038/364218a0

Bibliography

[29] S. Darby. The effectiveness of feedback on energy consumption. a review for DEFRA of the
literature on metering, billing and direct displays. Technical report, Environmental Change
Institute, University of Oxford, 2006. URL:
http://www.eci.ox.ac.uk/research/energy/downloads/smart-metering-report.pdf.

[30] Andrew Duffy. Greens want smart meter plug pulled, July 2011. Times Colonist, Vancouver.
URL: http://www.timescolonist.com/health/Greens+want+smart+meter+plug+pulled/
5171603/story.html.

[31] Corinna Fischer. Feedback on household electricity consumption: a tool for saving energy?
Energy Efficiency, 1(1):79–104, May 2008. doi:10.1007/s12053-008-9009-7.

[32] Jon Froehlich, Eric Larson, Sidhant Gupta, Gabe Cohn, Matthew Reynolds, and Shwetak
Patel. Disaggregated End-Use energy sensing for the smart grid. IEEE Pervasive
Computing, 10:28–39, January 2011. doi:10.1109/MPRV.2010.74.

[33] Aslak Grinsted, J. C. Moore, and S. Jevrejeva. Reconstructing sea level from paleo and
projected temperatures 200 to 2100 ad. Climate Dynamics, 34(4):461–472, January 2009.
doi:10.1007/s00382-008-0507-2.

[34] Christophe Guille and George Gross. A conceptual framework for the vehicle-to-grid (V2G)
implementation. Energy Policy, 37(11):4379–4390, November 2009. URL:
http://www.sciencedirect.com/science/article/pii/S0301421509003978.

[35] A.K. Gupta. Origin of agriculture and domestication of plants and animals linked to early
holocene climate amelioration. Current Science, 87(1):54–59, 2004. URL:
http://www.ias.ac.in/currsci/jul102004/54.pdf.

[36] James Hansen, Makiko Sato, Reto Ruedy, Ken Lo, David W. Lea, and Martin
Medina-Elizade. Global temperature change. Proceedings of the National Academy of
Sciences, 103(39):14288 –14293, 2006. doi:10.1073/pnas.0606291103.

[37] John E. Harries, Helen E. Brindley, Pretty J. Sagoo, and Richard J. Bantges. Increases in
greenhouse forcing inferred from the outgoing longwave radiation spectra of the earth in 1970
and 1997. Nature, 410(6826):355–357, March 2001. doi:10.1038/35066553.

[38] G. W Hart. Residential energy monitoring and computerized surveillance via utility power
flows. IEEE Technology and Society Magazine, 8(2):12–16, June 1989.
doi:10.1109/44.31557.

[39] George W. Hart, Edward C. Kern, and Fred C. Schweppe. Non-intrusive appliance monitor,
August 1989. United States Patent and Trademark Office. Patent number 4858141. URL:
http://www.google.com/patents?vid=4858141.

[40] Ola M Johannessen. Decreasing arctic sea ice mirrors increasing CO2 on decadal time scale.
Atmospheric and Oceanic Science Letters, 1(1):51–56, November 2008. URL:
http://hdl.handle.net/1956/2840.

[41] Willett Kempton and Laura Montgomery. Folk quantification of energy. Energy,
7(10):817–827, October 1982. URL:
http://www.sciencedirect.com/science/article/pii/0360544282900305,
doi:16/0360-5442(82)90030-5.

[42] J. Z Kolter, S. Batra, and A. Y Ng. Energy disaggregation via discriminative sparse coding.
Neural Information Processing Systems (NIPS), 2010. URL:
http://books.nips.cc/papers/files/nips23/NIPS2010_1272.pdf.

89

http://www.eci.ox.ac.uk/research/energy/downloads/smart-metering-report.pdf
http://www.timescolonist.com/health/Greens+want+smart+meter+plug+pulled/5171603/story.html
http://www.timescolonist.com/health/Greens+want+smart+meter+plug+pulled/5171603/story.html
http://dx.doi.org/10.1007/s12053-008-9009-7
http://dx.doi.org/10.1109/MPRV.2010.74
http://dx.doi.org/10.1007/s00382-008-0507-2
http://www.sciencedirect.com/science/article/pii/S0301421509003978
http://www.ias.ac.in/currsci/jul102004/54.pdf
http://dx.doi.org/10.1073/pnas.0606291103
http://dx.doi.org/10.1038/35066553
http://dx.doi.org/10.1109/44.31557
http://www.google.com/patents?vid=4858141
http://hdl.handle.net/1956/2840
http://www.sciencedirect.com/science/article/pii/0360544282900305
http://dx.doi.org/16/0360-5442(82)90030-5
http://books.nips.cc/papers/files/nips23/NIPS2010_1272.pdf

Bibliography

[43] C. Laughman, Kwangduk Lee, R. Cox, S. Shaw, S. Leeb, L. Norford, and P. Armstrong.
Power signature analysis. IEEE Power and Energy Magazine, 1(2):56– 63, April 2003.
doi:10.1109/MPAE.2003.1192027.

[44] J. Lenoir, J. C. Gégout, P. A. Marquet, P. de Ruffray, and H. Brisse. A significant upward
shift in plant species optimum elevation during the 20th century. Science, 320(5884):1768
–1771, June 2008. URL: http://www.sciencemag.org/content/320/5884/1768.abstract,
doi:10.1126/science.1156831.

[45] Dieter Luthi, Martine Le Floch, Bernhard Bereiter, Thomas Blunier, Jean-Marc Barnola,
Urs Siegenthaler, Dominique Raynaud, Jean Jouzel, Hubertus Fischer, Kenji Kawamura, and
Thomas F. Stocker. High-resolution carbon dioxide concentration record 650,000-800,000
years before present. Nature, 453(7193):379–382, May 2008. doi:10.1038/nature06949.

[46] Ian McDougall, Francis H. Brown, and John G. Fleagle. Stratigraphic placement and age of
modern humans from kibish, ethiopia. Nature, 433(7027):733–736, February 2005.
doi:10.1038/nature03258.

[47] Leslie K. Norford and Steven B. Leeb. Non-intrusive electrical load monitoring in commercial
buildings based on steady-state and transient load-detection algorithms. Energy and
Buildings, 24(1):51–64, 1996. URL:
http://www.sciencedirect.com/science/article/pii/0378778895009582.

[48] James C. Orr, Victoria J. Fabry, Olivier Aumont, Laurent Bopp, Scott C. Doney, Richard A.
Feely, Anand Gnanadesikan, Nicolas Gruber, Akio Ishida, Fortunat Joos, Robert M. Key,
Keith Lindsay, Ernst Maier-Reimer, Richard Matear, Patrick Monfray, Anne Mouchet,
Raymond G. Najjar, Gian-Kasper Plattner, Keith B. Rodgers, Christopher L. Sabine,
Jorge L. Sarmiento, Reiner Schlitzer, Richard D. Slater, Ian J. Totterdell, Marie-France
Weirig, Yasuhiro Yamanaka, and Andrew Yool. Anthropogenic ocean acidification over the
twenty-first century and its impact on calcifying organisms. Nature, 437(7059):681–686, 2005.
doi:10.1038/nature04095.

[49] Michael Parti and Cynthia Parti. The total and Appliance-Specific conditional demand for
electricity in the household sector. The Bell Journal of Economics, 11(1):309–321, April
1980. ArticleType: research-article / Full publication date: Spring, 1980 / Copyright © 1980
The RAND Corporation. doi:10.2307/3003415.

[50] Paul N. Pearson and Martin R. Palmer. Atmospheric carbon dioxide concentrations over the
past 60 million years. Nature, 406(6797):695–699, 2000. doi:10.1038/35021000.

[51] J. R. Petit, J. Jouzel, D. Raynaud, N. I. Barkov, J.-M. Barnola, I. Basile, M. Bender,
J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V. M. Kotlyakov, M. Legrand, V. Y.
Lipenkov, C. Lorius, L. PEpin, C. Ritz, E. Saltzman, and M. Stievenard. Climate and
atmospheric history of the past 420,000 years from the vostok ice core, antarctica. Nature,
399(6735):429–436, June 1999. doi:10.1038/20859.

[52] Leonid Polyak, Richard B. Alley, John T. Andrews, Julie Brigham-Grette, Thomas M.
Cronin, Dennis A. Darby, Arthur S. Dyke, Joan J. Fitzpatrick, Svend Funder, Marika
Holland, Anne E. Jennings, Gifford H. Miller, Matt O’Regan, James Savelle, Mark Serreze,
Kristen St. John, James W.C. White, and Eric Wolff. History of sea ice in the arctic.
Quaternary Science Reviews, 29(15-16):1757–1778, July 2010. URL:
http://www.sciencedirect.com/science/article/pii/S0277379110000429.

[53] E. Rignot, I. Velicogna, M. R. van den Broeke, A. Monaghan, and J. Lenaerts. Acceleration
of the contribution of the greenland and antarctic ice sheets to sea level rise. Geophysical
Research Letters, 38:5 PP., March 2011. URL:
http://www.agu.org/pubs/crossref/2011/2011GL046583.shtml.

90

http://dx.doi.org/10.1109/MPAE.2003.1192027
http://www.sciencemag.org/content/320/5884/1768.abstract
http://dx.doi.org/10.1126/science.1156831
http://dx.doi.org/10.1038/nature06949
http://dx.doi.org/10.1038/nature03258
http://www.sciencedirect.com/science/article/pii/0378778895009582
http://dx.doi.org/10.1038/nature04095
http://dx.doi.org/10.2307/3003415
http://dx.doi.org/10.1038/35021000
http://dx.doi.org/10.1038/20859
http://www.sciencedirect.com/science/article/pii/S0277379110000429
http://www.agu.org/pubs/crossref/2011/2011GL046583.shtml

Bibliography

[54] Johan Rockstrom, Will Steffen, Kevin Noone, Asa Persson, F. Stuart Chapin, Eric F.
Lambin, Timothy M. Lenton, Marten Scheffer, Carl Folke, Hans Joachim Schellnhuber, Bjorn
Nykvist, Cynthia A. de Wit, Terry Hughes, Sander van der Leeuw, Henning Rodhe, Sverker
Sorlin, Peter K. Snyder, Robert Costanza, Uno Svedin, Malin Falkenmark, Louise Karlberg,
Robert W. Corell, Victoria J. Fabry, James Hansen, Brian Walker, Diana Liverman,
Katherine Richardson, Paul Crutzen, and Jonathan A. Foley. A safe operating space for
humanity. Nature, 461(7263):472–475, 2009. doi:10.1038/461472a.

[55] K. von Schuckmann, F. Gaillard, and P.-Y. Le Traon. Global hydrographic variability
patterns during 2003–2008. Journal of Geophysical Research, 114:17 PP., September 2009.
URL: http://www.agu.org/pubs/crossref/2009/2008JC005237.shtml.

[56] Axel J Schweiger, Ron Lindsay, Jinlun Zhang, Michael Steele, Harry L. Stern, and Ron
Kwok. Uncertainty in modeled arctic sea ice volume. Journal of Geophysical Research, 2011.
doi:10.1029/2011JC007084.

[57] Dian J. Seidel, Qiang Fu, William J. Randel, and Thomas J. Reichler. Widening of the
tropical belt in a changing climate. Nature Geosci, 1(1):21–24, January 2008.
doi:10.1038/ngeo.2007.38.

[58] J. Seryak and K. Kissock. Occupancy and behavioral affects on residential energy use. In
American Solar Energy Society, Solar conference, pages 717–722, Austin, Texas, 2003. URL:
http://www.sbse.org/awards/docs/2003/Seryak1.pdf.

[59] S. R. Shaw, C. B. Abler, R. F. Lepard, D. Luo, S. B. Leeb, and L. K. Norford.
Instrumentation for high performance nonintrusive electrical load monitoring. Journal of
Solar Energy Engineering, 120(3):224–229, 1998. doi:10.1115/1.2888073.

[60] Robert H. Socolow. The twin rivers program on energy conservation in housing: Highlights
and conclusions. Energy and Buildings, 1(3):207–242, April 1978. URL:
http://www.sciencedirect.com/science/article/pii/0378778878900038.

[61] Susan Solomon, Gian-Kasper Plattner, Reto Knutti, and Pierre Friedlingstein. Irreversible
climate change due to carbon dioxide emissions. Proceedings of the National Academy of
Sciences, 106(6):1704 –1709, February 2009. doi:10.1073/pnas.0812721106.

[62] A. R. Stine, P. Huybers, and I. Y. Fung. Changes in the phase of the annual cycle of surface
temperature. Nature, 457(7228):435–440, January 2009. doi:10.1038/nature07675.

[63] Bjarne Stroustrup. The C++ Programming Language: Third Edition. Addison Wesley, 3
edition, June 1997.

[64] V Ismet Ugursal and Lukas G Swan. Modeling of end-use energy consumption in the
residential sector: A review of modeling techniques. Renewable and Sustainable Energy
Reviews, 13(8):1819–1835, 2009. doi:10.1016/j.rser.2008.09.033.

[65] Martin Vermeer and Stefan Rahmstorf. Global sea level linked to global temperature.
Proceedings of the National Academy of Sciences, 106(51):21527 –21532, December 2009.
doi:10.1073/pnas.0907765106.

[66] Muyin Wang and James E. Overland. A sea ice free summer arctic within 30 years?
Geophysical Research Letters, 36(7), April 2009. doi:10.1029/2009GL037820.

[67] Richard A. Winett and Michael S. Neale. Psychological framework for energy conservation in
buildings: Strategies, outcomes, directions. Energy and Buildings, 2(2):101–116, April 1979.
URL: http://www.sciencedirect.com/science/article/pii/0378778879900264.

[68] R.W. Wood. Note on the theory of the greenhouse. The London, Edinborough and Dublin
Philosophical Magazine, 17:319–320, 1909. URL:
http://www.wmconnolley.org.uk/sci/wood_rw.1909.html.

91

http://dx.doi.org/10.1038/461472a
http://www.agu.org/pubs/crossref/2009/2008JC005237.shtml
http://dx.doi.org/10.1029/2011JC007084
http://dx.doi.org/10.1038/ngeo.2007.38
http://www.sbse.org/awards/docs/2003/Seryak1.pdf
http://dx.doi.org/10.1115/1.2888073
http://www.sciencedirect.com/science/article/pii/0378778878900038
http://dx.doi.org/10.1073/pnas.0812721106
http://dx.doi.org/10.1038/nature07675
http://dx.doi.org/10.1016/j.rser.2008.09.033
http://dx.doi.org/10.1073/pnas.0907765106
http://dx.doi.org/10.1029/2009GL037820
http://www.sciencedirect.com/science/article/pii/0378778879900264
http://www.wmconnolley.org.uk/sci/wood_rw.1909.html

	Introduction
	Background
	The importance of reducing energy demand
	Energy consumption behaviour
	Two types of smart meter
	Existing disaggregation techniques

	Broad aims and research direction
	Dissertation outline
	Terminology used in this report

	Setting up the measurement and logging equipment
	Recording whole-house aggregate power consumption
	Recording device signatures

	Early prototype
	Prototype version 1
	Prototype v2: compensating for dropped measurements
	Prototype v3: offsetting & compensating for sample-rate mismatch
	Offsetting
	Sample-rate mismatch
	Accuracy of prototype v3

	Further experiments: finally achieving automated alignment of all devices
	Kettle and toaster
	Washing machine

	Failure to generalise
	Prototype summary: lessons and limitations

	First design: histograms and power states
	Aims
	Broad design principals
	Which programming language?
	Training strategy
	Disaggregation strategy
	Implementation
	Doxygen HTML code documentation
	Extracting a set of power states from the raw signature
	Extracting a power state sequence
	Data output

	Flaws in the ``histogram'' design

	gnuplot template instantiation system
	Implementation
	gnuplot output

	Limitations and future work

	Final design iteration: graphs and spikes
	Introduction
	Design
	Overview of training algorithm
	Overview of disaggregation algorithm

	Implementation
	Maintaining ``legacy'' functions and classes
	Boost graph library
	Overview of the PowerStateGraph class
	Updating statistics
	Non-zero standard deviation & calculating likelihood
	Indexing aggregate data by timecode
	Data output
	Boost program options
	Refinements
	Parameters
	Testing and debugging

	Performance
	10July.csv aggregate data
	3 days of aggregate data (earlyJuly.csv)
	10 days of aggregate data (earlyAugust.csv)
	Conclusions

	Conclusions and future work
	Limitations
	Other applications of this work
	Further work
	Combine all three approaches
	Machine learning approaches
	More efficient implementation & parallelisation
	Try a simpler approach based on non-invasive load monitoring
	Remove deprecated sections of code
	Capture relationships between devices
	Capture the probability that a device is active at a given time of day
	Ultimate aim: to build a smart meter disaggregation web service

	Conclusion

	User guide
	Input files
	Output files
	Configuration file
	GNUplot templates
	Runtime dependencies
	Compiling from source
	Compilation dependencies

	Generating Doxygen documentation
	Running unit tests

	Further (simplified) code listings
	Training code
	Disaggregation code

	Software engineering tools used
	Bibliography

