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1) Motivation

* Every house in the UK will have a smart meter by 2019

* Disaggregated, appliance-by-appliance information enables consumers to
manage their electricity consumption effectively

* Reducing energy consumption is a good idea for multiple reasons

2) Aim

* Infer which appliances are active & energy used by each appliance
given only the whole-house aggregate smart meter signal.
Appliance-by-appliance submetering is not required.

3) Challenges

Challenge 1: modelling multi-state appliances

* The following figure shows five runs of the same
washing machine. Note that:

* the washing machine has multiple states and
* the sequence of states varies from run to run B
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Cha,llenge 2: rapidly changing appliance waveforms
* The figure below shows a tumble drier waveform
* Note the regular spikes in the waveform

* Most existing techniques start by simplifying waveforms into sequences of
steady-states, hence ignoring these rather distinctive regular patterns.
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4) Our proposed solution

* Disaggregation will be a 4 step process:
1) Process smart meter data with a bank of feature detectors
2) Decode features into multiple probabilistic appliance hypotheses
3) Refine hypotheses using a probabilistic graphical model representing
higher-order relationships
4) Further refine hypotheses by reconstructing appliance waveforms
and fitting these reconstructed waveforms to the aggregate signal

* Appliances will be modelled using 3 hierarchical layers:

Layer 1: Parameterised models of appliance components

* All appliances are constructed from a set of components such as motors,
heaters, compressors and plasma screens, for example:
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Layer 2: Finite Markov chain models of appliances

* The probability of observing a component state change will be represented
by a graphical model. Each node represents the state (on, off, repeating or
ramping) of each component in the appliance

* The figure below shows a cartoon example FMC for a tumble drier
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Layer 3: Higher-order relationships

* Correlations between appliances
* Hidden parameters e.g. occupancy
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5) Preliminary results

* I have implemented a feature-detector designed to address challenge 2

* The figure below shows the output of my ”spike histogram” feature
detector in the top panel and the input smart meter time series in
the lower panel

* The time series is broken into 3 minute slices. For each time slice, a
histogram of the forward difference is calculated. Each column in the
figure represents a time slice.

* This feature detector is capable of resolving the differences between
several appliances (manually annotated in the figure below)

* This will be one of several feature detectors
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6) Next steps

* Implement the design outlined above

* Characterise the performance of our disaggregation system using MIT’s
Reference Energy Disaggregation Data Set http://redd.csail.mit.edu
and our own data (which will also be made public)



