
100

200

300

400

500

600

700

800

Network output

0

100

200

300

400

500

600
Disaggregated vector

0

500

1000

1500

2000

2500
Target

95000 100000 105000 110000 115000
0

1000

2000

3000

4000

5000
Network input

Neural NILM: Deep Neural Networks
Applied to Energy Disaggregation

Jack Kelly &
William Knottenbelt

jack.kelly@imperial.ac.uk
Department of Computing, Imperial College London

1) INTRODUCTION
Artificial Neural Nets have gone in and out of fashion at least twice since
their birth in the 1950s. In the last few years, 'deep' neural nets have
achieved state of the art performance on many machine learning tasks
including image classification, automatic speech recognition, handwriting
recognition, machine translation, learning Atari games (!) etc. In many of
these tasks, deep neural nets now have a substantial performance
advantage over other approaches.

Automatic Feature Learning: 'Classical' machine learning often involves
hand-engineering a number of feature detectors. These hand-engineered
feature detectors are time consuming to engineer and are often fragile in
practice. Deep neural nets don't require hand-engineered feature
detectors. Instead they learn a hierarchy of feature detectors from the
data. Given enough training data, deep neural nets learn feature
detectors which are often more robust and more informative than hand-
engineered feature detectors.

Feature Detectors for NILM: Many existing NILM algorithms extract a
small number of features from the aggregate power signal. But if we train
ourselves to identify appliances, we use a rich set of features. For
example, a washing machine's drum motor regularly stops and starts
during the rinse cycle. These rapid spikes in the power demand signal are
a clear indication of a washing machine. But most NILM feature extractors
ignore these spikes as 'noise'. We wanted to see if deep neural nets might
be able to learn to detect these rich features.

ACKNOWLEDGEMENTS
This work was funded by a EPSRC DTA and an Intel PhD Fellowship.

REFERENCES
[1] Jack Kelly & William Knottenbelt. The UK-DALE dataset, domestic appliance-level electricity demand and whole-house demand from five UK homes.
Scientific Data 2, Article number:150007, 2015. DOI:10.1038/sdata.2015.7
[2] Jack Kelly, Nipun Batra, Oliver Parson, Haimonti Dutta, William Knottenbelt, Alex Rogers, Amarjeet Singh, Mani Srivastava. Demo Abstract: NILMTK
v0.2: A Non-intrusive Load Monitoring Toolkit for Large Scale Data Sets. In the first ACM Workshop On Embedded Systems For Energy-Efficient
Buildings, 2014. DOI:10.1145/2674061.2675024

18:35:00

18:45:00

18:55:00

19:05:00

19:15:00

19:25:00

19:35:00

19:45:00

19:55:00

Time

0

500

1000

1500

2000

2500

P
o
w

e
r

(w
a
tt

s)

Washing machine

2) METHOD
Network input: We train 1 net per target appliance. The network input
during training and inference is a window of raw aggregate time series
data (after gaps have been filled). The window length is set to be a little
longer than the maximum duration of an appliance activation (e.g. 2 hours
for a washing machine or 5 minutes for a kettle).

Network output: The network tries to locate the target appliance and its
mean power demand by drawing a rectangle over the target appliance in
the aggregate input. The network outputs 3 positive real numbers: 1) the
start time of the target appliance activation, 2) the end time and 3) the
mean appliance power demand over the activation.

Network layers:
1 = Input layer varies in size per appliance
2 = 1D convolutional layer (number of filters=16, filter size=4, stride=1)
3 = 1D convolutional layer (number of filters=16, filter size=4, stride=1)
4 = Dense layer (8192 rectified linear units)
5 = Dense layer (4096 rectified linear units)
6 = Dense layer (2048 rectified linear units)
7 = Dense layer (512 rectified linear units)
8 = Output layer (3 linear units)

We experimented with dropout and batch normalisation but neither
appeared to add anything useful.

Training: Deep neural nets require a lot of training data. So we generate
an effectively infinite amount of training data by randomly combining real
appliance activations into synthetic aggregates. The training objective is
to minimise MSE. We trained on an nVidia GTX780Ti GPU for ~24 hours
per appliance. We use the Python library Lasagne (built on top of Theano).

Inference: How do we cope with arbitrarily long sequences given that
each net has an input window duration of 2 hours or shorter? We slide the
net along the input sequence (with stride = 16). We then layer every
predicted 'appliance rectangle' on top of each other. We measure the
overlap and normalise the overlap to [0, 1]. This gives a probabilistic
output for each appliance's power demand. To convert this to a single
vector per appliance, we threshold the power & probability.

0.0

0.2

0.4

0.6

0.8

1.0

F1
score 0

.0
0

0
.1

0

0
.4

4

0
.3

7

0
.7

7

Fridge
freezer

0
.0

0

0
.0

1

0
.1

0

0
.0

6

0
.9

0
Kettle

0
.0

0

0
.3

3

0
.6

8

0
.6

8

0
.8

7

HTPC

0
.0

0

0
.3

1

0
.5

7

0
.5

5

0
.9

2

Washer
dryer

0
.0

0

0
.3

0

0
.6

9

0
.7

3

0
.9

6

Dish
washer

0
.0

0

0
.2

1

0
.5

0

0
.4

8

0
.8

8

Across all
appliances

0.0

0.2

0.4

0.6

0.8

1.0

Precision
score 0

.0
0

0
.0

5

0
.2

9

0
.2

4

0
.7

7

0
.0

0

0
.0

0

0
.0

6

0
.0

3

0
.9

5

0
.0

0

0
.2

0

0
.6

3

0
.6

2

0
.8

8

0
.0

0

0
.1

9

0
.7

2

0
.7

1

0
.9

0

0
.0

0

0
.1

7

0
.7

0

0
.7

6

0
.9

3

0
.0

0

0
.1

2

0
.4

8

0
.4

7

0
.8

9

0.0

0.2

0.4

0.6

0.8

1.0

Recall
score 0

.0
0

1
.0

0

0
.8

9

0
.7

9

0
.7

6

0
.0

0

1
.0

0

0
.4

7

0
.7

0

0
.8

5

0
.0

0

1
.0

0

0
.7

3

0
.7

4

0
.8

6

0
.0

0

1
.0

0

0
.4

7

0
.4

5

0
.9

5

0
.0

0

1
.0

0

0
.6

8

0
.7

1

0
.9

8

0
.0

0

1
.0

0

0
.6

5

0
.6

8

0
.8

8

0.0

0.2

0.4

0.6

0.8

1.0

Accuracy
score 0

.9
5

0
.0

5

0
.8

8

0
.8

6

0
.9

7

1
.0

0

0
.0

0

0
.9

7

0
.9

2

1
.0

0

0
.8

0

0
.2

0

0
.8

6

0
.8

6

0
.9

5

0
.8

1

0
.1

9

0
.8

7

0
.8

6

0
.9

7

0
.8

3

0
.1

7

0
.8

9

0
.9

1

0
.9

9

0
.8

8

0
.1

2

0
.8

9

0
.8

8

0
.9

8

1.0

0.5

0.0

0.5

1.0

Relative
error in

total
energy

-1
.0

0

0
.0

0

0
.7

5

0
.7

4

-0
.1

3

-1
.0

0

0
.0

0

0
.7

9

0
.7

3

-0
.1

4

-1
.0

0

0
.0

0

0
.0

8

0
.1

4

-0
.0

8

-1
.0

0

0
.0

0

0
.2

8

0
.2

6

-0
.0

9

-1
.0

0

0
.0

0

-0
.7

2

-0
.6

0

0
.0

2

-1
.0

0

0
.0

0

0
.2

4

0
.2

5

-0
.0

8

0.0

0.2

0.4

0.6

0.8

1.0

Prop. of
total

energy
correctly
assigned

0
.9

9

0
.9

8

0
.9

7

0
.9

7

1
.0

0

0
.9

8

0
.9

7

0
.9

2

0
.9

3

1
.0

0

0
.9

7

0
.9

6

0
.9

8

0
.9

8

0
.9

9

0
.7

9

0
.6

4

0
.8

5

0
.8

5

0
.7

7

0
.7

7

0
.6

1

0
.8

0

0
.8

3

0
.7

0

0
.5

0

0
.1

5

0
.5

2

0
.5

6

0
.4

6

0

50

100

150

200

250

Mean
absolute

error
(watts)

5 9 1
6

1
6 2 8 1
7

4
4

3
7 2 1
4

2
2

1
0

1
1 4

1
1

3

1
9

1

7
9

7
8

1
2

0

1
2

3

2
0

7

1
0

3

8
9

1
5

5

5
3

8
9

5
0

4
6

5
7

Always off Mean Combinatorial Optimisation Factorial HMM Neural NILM

3) RESULTS
We generated 9 days of synthetic aggregate data using appliance
activations not seen by the nets during training.

Raw network output: The plot below shows, from the bottom panel up:
1) a window of synthetic aggregate; 2) the ground truth target (4
activations of a washing machine); 3) the net's vector output; 4) the
probabilistic net output (overlapping rectangles).

Comparison with other NILM algorithms: we trained and tested two
benchmark algorithms from NILMTK[2] on the same data that we used with
Neural NILM. For comparison, we also included two 'dumb' algorithms: one
which always outputs zeros (!) and one which always outputs the mean.
Neural NILM out-performs the other algorithms on every metric but one.
Neural NILM doesn't come first on the 'proportion of total energy correctly
assigned across all appliances' because Neural NILM doesn't try to track
state changes on multi-state appliances like the washer dryer and dish
washer. But this should be fixable in a future version of Neural NILM!

recall = true positive rate = sensitivity = TP / P = TP / (TP + FN)
precision = positive predictive value = TP / (TP + FP)
accuracy = (TP + TN) / (P + N)
relative error in total energy = |total predicted energy - total actual energy| / max(predicted, actual)

Proportion of total energy
correctly assigned

4) CONCLUSIONS AND FUTURE WORK
We have demonstrated the first application of DNNs to NILM. This first
version of Neural NILM already out-performs CO and FHMM algorithms.
There are a large number of improvements we are planning to try.

