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1) INTRODUCTION
Artificial Neural Nets have gone in and out of fashion at least twice since 
their birth in the 1950s.  In the last few years, 'deep' neural nets have 
achieved state of the art performance on many machine learning tasks 
including image classification, automatic speech recognition, handwriting 
recognition, machine translation, learning Atari games (!) etc.  In many of 
these tasks, deep neural nets now have a substantial performance 
advantage over other approaches.

Automatic Feature Learning: 'Classical' machine learning often involves 
hand-engineering a number of feature detectors.  These hand-engineered 
feature detectors are time consuming to engineer and are often fragile in 
practice. Deep neural nets don't require hand-engineered feature 
detectors.  Instead they learn a hierarchy of feature detectors from the 
data.  Given enough training data, deep neural nets learn feature 
detectors which are often more robust and more informative than hand-
engineered feature detectors.

Feature Detectors for NILM: Many existing NILM algorithms extract a 
small number of features from the aggregate power signal.  But if we train 
ourselves to identify appliances, we use a rich set of features.  For 
example, a washing machine's drum motor regularly stops and starts 
during the rinse cycle.  These rapid spikes in the power demand signal are 
a clear indication of a washing machine.  But most NILM feature extractors 
ignore these spikes as 'noise'.  We wanted to see if deep neural nets might 
be able to learn to detect these rich features.
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2) METHOD
Network input:  We train 1 net per target appliance.  The network input 
during training and inference is a window of raw aggregate time series 
data (after gaps have been filled).  The window length is set to be a little 
longer than the maximum duration of an appliance activation (e.g. 2 hours 
for a washing machine or 5 minutes for a kettle).

Network output:  The network tries to locate the target appliance and its 
mean power demand by drawing a rectangle over the target appliance in 
the aggregate input.  The network outputs 3 positive real numbers: 1) the 
start time of the target appliance activation, 2) the end time and 3) the 
mean appliance power demand over the activation.

Network layers:
1 = Input layer varies in size per appliance
2 = 1D convolutional layer (number of filters=16, filter size=4, stride=1)
3 = 1D convolutional layer (number of filters=16, filter size=4, stride=1)
4 = Dense layer (8192 rectified linear units)
5 = Dense layer (4096 rectified linear units)
6 = Dense layer (2048 rectified linear units)
7 = Dense layer (512 rectified linear units)
8 = Output layer (3 linear units)

We experimented with dropout and batch normalisation but neither 
appeared to add anything useful.

Training: Deep neural nets require a lot of training data.  So we generate 
an effectively infinite amount of training data by randomly combining real 
appliance activations into synthetic aggregates.  The training objective is 
to minimise MSE.  We trained on an nVidia GTX780Ti GPU for ~24 hours 
per appliance.  We use the Python library Lasagne (built on top of Theano).

Inference: How do we cope with arbitrarily long sequences given that 
each net has an input window duration of 2 hours or shorter?  We slide the 
net along the input sequence (with stride = 16).  We then layer every 
predicted 'appliance rectangle' on top of each other.  We measure the 
overlap and normalise the overlap to [0, 1].  This gives a probabilistic 
output for each appliance's power demand.  To convert this to a single 
vector per appliance, we threshold the power & probability.
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3) RESULTS
We generated 9 days of synthetic aggregate data using appliance 
activations not seen by the nets during training.

Raw network output: The plot below shows, from the bottom panel up: 
1) a window of synthetic aggregate; 2) the ground truth target (4 
activations of a washing machine); 3) the net's vector output; 4) the 
probabilistic net output (overlapping rectangles).

Comparison with other NILM algorithms: we trained and tested two 
benchmark algorithms from NILMTK[2] on the same data that we used with 
Neural NILM.  For comparison, we also included two 'dumb' algorithms: one 
which always outputs zeros (!) and one which always outputs the mean.  
Neural NILM out-performs the other algorithms on every metric but one.  
Neural NILM doesn't come first on the 'proportion of total energy correctly 
assigned across all appliances' because Neural NILM doesn't try to track 
state changes on multi-state appliances like the washer dryer and dish 
washer.  But this should be fixable in a future version of Neural NILM!

recall = true positive rate = sensitivity = TP / P = TP / (TP + FN)
precision = positive predictive value = TP / (TP + FP)
accuracy = (TP + TN) / (P + N)
relative error in total energy = |total predicted energy - total actual energy| / max(predicted, actual)

Proportion of total energy 
correctly assigned

4) CONCLUSIONS AND FUTURE WORK
We have demonstrated the first application of DNNs to NILM. This first 
version of Neural NILM already out-performs CO and FHMM algorithms. 
There are a large number of improvements we are planning to try.


