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Abstract—The current, widespread introduction of smart elec-
tricity meters is resulting in large datasets’ becoming available,
but there is as yet little in the way of advanced data analytics
and visualization tools, or recommendation software for changes
in contracts or user behaviour, which use this data. In this paper
we present an integrated tool which combines the use of abstract
argumentation theory with linear optimization algorithms, to
achieve some of these ends.
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I. INTRODUCTION

Recent research [1] has shown that UK energy prices
are rising at eight times the rate of average earnings, and
the industry’s trade body, Energy UK, recently warned that
“household bills could rise by another 50% over the next
six years” [2]. Partly as a response to this trend, and partly
also in an attempt to improve the sustainability of current
forms of energy usage in at least the medium term, the UK
Deptartment of Energy and Climate Change has required a
gradual introduction of ‘smart meters’, to be rolled out to all
UK homes by 2020 [3]. EU legislation from 2012 states that
“80% of all electricity meters in the EU have to be replaced
by smart meters by 2020” [4].

Smart meters record the utility (e.g., electricity, gas, wa-
ter) consumption within a household—our focus here is on
electricity. After a regular, and often short interval, the energy
consumed is recorded, and can be stored or sent to a local
database for future analysis. This can result in a substantial
amount of data’s being available for analysis. However, there is
currently no complete software package available which makes
an innovative use of the data, to properly empower individual
users to control their electricity bills by providing detailed
analysis of existing usage, and intelligent recommendations
on how to adjust usages or contract providers, in order best to
meet the users’ demands.

In this paper we present preliminary work to that end.
Specifically, we make use of abstract argumentation (AA)
theory [5], a branch of logical AI, to construct theoretically-
underpinned arguments for how a user might change electricity
contracts and behaviour in order to minimize their electricty
bill. The use of AA is combined with linear optimization
algorithms, and both are applied to a data output from
smart meters currently available. We use two large, real-
world data sets for testing and evaluation. The resulting web-
based implementation is available online, as a prototype, at

http://smartelectricity.io.1

The paper is organized as follows. In §II we present back-
ground on abstract argumentation, and describe the data sets
used. In §III we describe central parts of the functionality of
our tool. In §IV we present results from the detailed evaluation,
and comparison, made. We conclude in §V.

II. BACKGROUND

Abstract argumentation [5] is used to represent the reason
about the relations of conflict between opposing arguments,
without delving into the internal logical structure of those
arguments.

Definition 1. An abstract argumentation framework is a tuple
(Args, ), where
• Args is a set of arguments;
•  ⊆ Args× Args is the attack relation. y

For example, the set Args might represent arguments for
changing electricity contracts to a different provider based on
current or projected electricity usage patterns, with the attack
relation  being between arguments for different contracts.

A total set of ‘winning’ arguments is determined in several
alternative ways, based on the attack relation over Args, as
follows.

Definition 2. Where (Args, ) is an AA-framework:
• A ⊆ Args is conflict-free if there are no a,b ∈ A such

that a b;
• A ⊆ Args is admissible if (i) it is conflict-free, and (ii)

for any a ∈ A such that b a, there is a′ ∈ A such that
a′  b;

• A ⊆ Args is preferred if it is maximally (w.r.t. ⊆)
admissible. y

Admissibility of a set of arguments thus ensures for them
a form of internal consistency, and means they collectively
defend themselves from external attack; preferredness requires
this in a ⊆-maximal way. (Other semantics have been widely
studied. See [6] for details.)

We were able to make use of two large electricity smart-
meter datasets in testing and evaluating our implementation.

First, the UK Power Data (UKPD) dataset [7]2 contains
detailed power consumption data from four London houses

1Log in using username houseX, password houseX, for X ∈ {1, 2, 3, 4}.
2http://www.doc.ic.ac.uk/∼dk3810/data/



recorded over several months. The data were recorded using
two types of sensor, Current Transformers3 and EDF Trans-
mitter Plugs,4 for individual appliance measurements. The data
contains entries for individual appliances, as well as for the
entire house consumption.

Secondly, the Household Electricity Survey (HES)
dataset [8] includes data from 250 owner-occupied households
from England, from 2010 to 2011. 26 households were
monitored for a full year, and the remaining 224 for one
month, on a rolling basis throughout the trial. This data is
disaggregated—that is, appliance-specific—with no aggregates
provided per house.

In addition to the two datasets, we collected and represented
electricity contract data. All widely-used contracts from the
two main UK electricity suppliers (British Gas5 and EDF
Energy6) were used.

III. FUNCTIONALITY

A. Data representations

Contract data was standardized to be represented in a UML
format of the form

A configurable, stand-alone application was written to per-
form data-standardization for the smart electricity readings
from the two datasets. This standardization had several aspects.
The data in each of the two sets represents the electricity usage
over a given interval of n seconds; but the value of n varies,
both between datasets and also within specifically the HES
dataset—as determined by the particular smart meters in use.
The UKPD data uses an interval of 6 seconds, and the HES
data has an interval of 2 minutes for the majority of houses,
and 10 minutes for the others. In the case of the UKPD set,
this would mean 14,400 data points per house per day—a
substantial storage cost. As our implementation is intended to
be the prototype for a web-based application, data calls with

3http://www.elkor.net/pdfs/AN0305-Current Transformers.pdf
4https://shop.edfenergy.com/Item.aspx?id=540&CategoryID=1
5http://www.britishgas.co.uk/
6http://www.edfenergy.com/

such amounts of data would hinder the user experience and
also make computation much more expensive, both on the
server-side and on the client-side. Accordingly, we selected
a time of 1 hour to be the standard length of interval, and
aggregated both datasets appropriately.—Other aspects of the
standardization were less significant. We chose the DateTime
format7 for the time-stamp, and since the HES dataset only
exists in a disaggregated form (values per appliance), we
also summed the data to produce total series of values per
household—values which are used in some of the functions
of our implementation.

B. Data visualization

For the data visualization components of the implementa-
tion, we used the HighchartsJS8 framework, which allows for
a wide variety of visualization types, and is supplied with
extensive documentation. In the present subsection we describe
three of the data visualizations we developed.

First, the aggregated consumption and cost chart. (For a
screenshot, see Figure 1.) This chart represents two types of
data: a line series depicts the consumption of electricity over a
given period, with points at each hourly interval as determined
by the data standardization discussed in §III-A. Secondly,
at each point of the aggregated consumption data line, the
respective cost of that consumption sample under one or more
contracts is visualised in the form of column bars. This may be
the cost under the contract the user is currently under or any
alternative contracts, or a combination thereof. The user may
choose the total period for which the data is displayed, either
using presets or by sliding a bar to fix the period precisely;
and the contracts whose pricing is displayed can be toggled
on or off in the legend. Finally, as the user hovers over points
on the graph, the precise values of the nearest data point are
displayed. This form of visualization enables the user to see,
of their aggregated electricity consumption, how a selection
of contracts compare in a fine-grained way.

The aggregated consumption and cost chart may prove
useful to a user if the user wants to examine their usage as
a whole, with a view to changing contract. However, the user
may wish, instead, to alter their behaviour whilst remaining
with their current provider and on their current contract. For
this, visualizations using the disaggregated datasets are more
appropriate. Thus, secondly, we implemented a disaggregated
consumption chart (see Figure 2). As with the aggregated
consumption and cost chart, the user may select a period
for which the data is visualized. A number of appliances are
selected, and the visualization then presents the changing total
consumption, per hourly interval, over the period selected, as
well as the electricity consumption per individual appliance.
This enables the user to see frequent spikes in the power
consumed by particular appliances—thus allowing them to
consider altering their behaviour with respect to those devices
which use the most power.

7http://msdn.microsoft.com/en-gb/library/system.datetime.aspx
8http://www.highcharts.com/



Fig. 1. Aggregated consumption and cost chart.

Fig. 2. Disaggregated consumption chart.

Fig. 3. Average consumption appliance chart.



Fig. 4. Contract comparison chart.

Related to this fine-grained depiction of applicance electric-
ity usage, our average consumption appliance chart (shown
in Figure 3) depicts the average electricity consumption over
the entirety of a selected data interval, at a single glance.
The consumption of the ten appliances which use the most
electricity in the given period is shown, together with a section
(‘other applicances’) for those appliances whose electricity
consumption is known. Since the datasets we use sometimes
show a discrepancy between the sum of the values for the dis-
aggregated appliances, and the aggregated consumption value
(since not all appliances are included in the disaggregation),
there is also a sector in the pie chart for ‘other consumption’,
representing the other appliance usage not included in the
disaggregated data.

C. Contract comparison

In order to give a summary of comparisons between differ-
ent contracts of electricity providers, we also allow a detailed
tabular comparison between the prices a user would have been
charged, on a set of different contracts, for selectable, different
periods of their historical power usage (see Figure 4). The
Contract Summary Table provides a breakdown of how
a user’s electricity would have been charged according to
different contracts, over a number of different periods; the
entries are ordered according to the saving, or loss, to be
accrued for that period, with the row for the current contract
highlighted. For example, for the user whose electricity is
being analyzed in Figure 4, a switch to EDF’s ‘Blue + Price
Promise’ Economy 7 contract is indicated: this would involve
a saving of £37.88 for the selected period. Switching contracts
to either EDF’s ‘Blue + Price Freeeze’ Economy 7 contract,
or British Gas’s ‘Fix and Control’ Economy 7, would have
resulted in the user being £12.82 or £19.47 out of pocket,
respectively.

Although the Contract Summary Table is useful for visual-
ising contracts and giving aggregate cost figures calculated on
the basis of the user’s consumption, it does not explicitly state
comparison conclusions and justification. Further, they are pas-
sive features and their purpose is to complement comparisons
rather than being the source of them. Thus, we also supplement
the Contract Summary Table with Contract comparison rec-
ommendations, which give detailed, argumentation-theoretic
justifications for the results summarized in the table. Let X and

Y be two contracts to be compared. Each contract splits the
day into a number of intervals X1, . . . , Xm and Y1, . . . , Yn.
These may not overlap, so that there is a set TX,Y of k 6 m×n
tarif stretches:

TX,Y = {Xi ∩ Yj | Xi ∈ {X1, . . . , Xm},
Yj ∈ {Y1, . . . , Yn}, Xi ∩ Yj 6= ∅}

Each tarif-stretch represents a period of time over which each
contract’s tarif is constant, and for each tarif-stretch T ∈ TX,Y

either the total charge for contract X , or Y , is greater, or they
are equal. Let X(T ) be the amount charged by contract X
for tarif-stretch T ∈ TX,Y , and Y (T ) the amount charged
by contract Y ; since contracts also have standing charges, let
X(S) be the standing charge for X , and Y (S) that for Y .
Further, let X({T1, . . . , Tn}) be X(T1) + · · · + X(Tn), etc.
Define w : TX,Y ∪ {S} → {X,Y, {X,Y }} so that:

w(T ) =

 X if X(T ) < Y (T ),
Y if X(T ) > Y (T ),
{X,Y } if X(T ) = Y (T ).

so that w(T ) gives the ‘winner’ between contracts X and Y ,
in the sense of the contract which charges least for that stretch
(or for the standing charge, in the case of w(S)).

So, given two contracts X and Y , the resulting abstract
argumentation framework (ArgsX,Y , X,Y ) has:

ArgsX,Y = {({T1, . . . , Tk}, C) | T1, . . . , Tk ∈ TX,Y ∪ {S},
w(T1) = · · · = w(Tk) = C, (C = X ∨ C = Y )}

 X,Y = {((T1, C1), (T2, C2)) | C1 6= C2,

C1(T1) 6 C2(T2)}
We then find preferred extensions of the resulting argumenta-
tion framework.

Example 1. Consider two contracts, X and Y :
• X charges electricity at a rate of 15p per kWh between

8am and 9pm, and 13.54p per kWh between 9pm and
8am; and there is a standing charge of £40;

• Y charges electricity at a rate of 16.54p per kWh between
9am and 10pm, and 13.54p per kWH between 10pm and
9am, with a standing charge of £35.

This gives TX,Y and standing charges (S) as follows (shown
with the kWh used for a sample period, and the resultant prices
for X and Y ):

p/kWh (X/Y ) kWh Price (X/Y ), £ w
T1, 08–09 15 / 13.54 166 24.9 / 22.48 Y
T2, 09–21 15 / 16.54 260 39 / 43 X
T3, 21–22 14.54 / 16.54 300 43.62 / 49.62 X
T4, 22–08 14.54 / 13.54 400 58.16 / 54.16 Y

S n/a n/a 40 / 35 Y

This gives the AA-framework shown below. (The arguments
have been annotated with the £ value of the saving made on
the winning contract; so the ({T1}, Y ) : 2.4236 represents
that over tarif stretch T1, contract Y is the cheaper contract
by £2.4236.)



({T1}, Y ) : 2.4236

({T2}, X) : 4.004 ({T3}, X) : 6

({T4}, Y ) : 4 ({S}, Y ) : 5

({T1, T4}, Y ) : 6.4236 ({T1, S}, Y ) : 7.4236({T4, S}, Y ) : 9

({T1, T4, S}, Y ) : 11.4236

({T2, T3}, X) : 10.004

The preferred extension has all and only arguments for Y . y

The argumentation framework exhibits a number of features.
If there is a ‘winning’ contract, then there will be at least
one argument in ArgsX,Y supporting that contract which is
unattacked by any other argument; in fact, any unattacked
argument in the framework represents a decisive argument,
based on cost, for the contract it supports. Further, there may
be two preferred extensions; this represents the case where,
although for particular tarif stretches one contract may be
better than another, overall, the contracts would require equal
payments for the period and usage under consideration.

The output from the argumentation component is processed
in order to give a prose output to the user. For example,
w.r.t. the example above:

Even though in the stretch 09:00–22:00 contract X
is less costly by £35.60, contract Y in the interval
22:00–09:00 is less costly by £23.62 and has £15
less standing charges, which is enough to make it
less costly overall by £3.02, over the selected date
interval.

Whilst the sum-total of the difference between the charges
for the two contracts might easily be computed without any
argumentation theory, the use of an argumentation-theoretic
underpinning brings the logical relations between the structure
of charges to the surface, and provides a stepping-stone which
lets the natural-language rendition be easily computed.

D. Recommendation generation

Recommendation generation is a central feature of our
approach. The recommendations we implemented are divided
into two broad categories, of General and Appliance rec-
ommendations. In the present subsection we select some of
the many recommendation capacities that our suite of tools
provides.

General recommendations concern a user’s aggregated con-
sumption (without paying attention to any appliance-specific,
disaggregated data). We have already mentioned, in §III-C,
contract comparisons: if all contracts available are compared,
these can be used to provide a Contract switch recom-
mendation based in a straightforward fashion on the user’s
history of electricity usage. If the user wishes to stay with
her or his current electricity provider and contract, then a
Consumption behaviour recommender can provide advice
on how the cost of the user’s bill might have been lowered by
shifting portions of the aggregate power consumption between

what, in §III-C, were called ‘tarif stretches’. The Consumption
behaviour recommender finds portions of the power usage
which occur near the boundaries between tarif stretches, and
optimizes the price of the bill by allocating this power to a
different stretch. The tool does this by looking at the total
usage for a given period (again, selectable by the user).

A Reduced usage estimator allows the user to see what
percentage of the various tarif stretches’ usage needs to be cut
if a desired reduction in the price of a bill is to be achieved.
One sliding bar represents the cost of electricity, and more
sliding bars (one each per tarif stretch) shows the percentage
of usage allocated to that stretch. When the user manipulates
the slider on any one bar, the others compensate in real time.
If the total bill cost is reduced, aggregate electricity usage is
shifted between tarif stretches to indicate how the user must
change behaviour; and the process also works in reverse, as
the user alters the amount of power usage allocated to any
particular stretch.

Finally, Shifted usage recommendations, perhaps the
most useful of the general recommendations provided, com-
bine the Contract switch recommendations with Consumption
behaviour recommendations. The recommendations examine
minimal changes to the user’s aggregate electricity usage
patterns (up to a threshold which is easily configurable)
in combination with all possible contracts with all possible
electricity providers, to give overall advice on the best bill
price possible (given historical usage patterns), if the user can
switch contract and provider, and alter a small portion of their
power consumption to times slightly earlier or later.

Appliance recommendations use disaggregated data to
achieve more fine-grained recommendations. A basic Appli-
ance consumption table shows the average hourly consump-
tion per applicance, together with the total price per appliance
over a user-selectable interval. An Appliance recommenda-
tion table performs a similar function to the Consumption
behaviour recommender described above, but for individual
pieces of equipment. This tool calculates the n appliances, a
portion of whose usage might mostly profitably be switched
from one tarif stretch to another, displays this information
to the user, and finds the resultant monetary benefit. An
Appliance savings estimator (Figure 5) allows the user to
see the effect of different reductions in the usage of indi-
vidual appliances on total bill cost whilst remaining with
the current provider and contract, or to set a desired bill
reduction and see how this can best be balanced by reducing
appliances’ use. Thresholds can be set—a useful constraint
when a subset of appliances may only be reduced to a certain
degree. Recommendations are displayed as percentage values
of current usage. Additional recommendations for appliances
(Figure 6) converts these percentages into cardinal values. This
works by estimating, on by an analysis of appliance power
usage values, the number of times a given appliance is used
per day on average, and calculating how many times fewer the
appliances should be used to give the desired cost reduction.

Most of the recommendation functionality is implemented
as the solution of linear optimization problems solved in real



Fig. 5. Appliance savings estimator.

Fig. 6. Additional appliance recommendations.

time; we omit the details, which are straightforward.

IV. EVALUATION

We wanted to provide some basic testing of the various
forms of recommendation our tool offers. The ideal way to do
this would have been to roll out the tool as a beta to users,
who could have collected disaggregated data for a year, then
followed different recommendations the tool gave. A form of
validation could then be found if the users’ bills, over the
following year, were low relative to all possible combinations
of provider and contract.

Unfortunately, this sort of testing was markedly infeasible:
we did not have the time to conduct a study of such length, nor
the number of users, and did not want to become immersed
in technicalities of data collection when our primary intention
was with recommendations and the use of data. Accordingly,
we made use of the existing datasets. These were split into a
set from which recommendations were made, and a set against
which, once the recommendations had been followed, the
effect was measured (call the former training, the latter testing
data). For example, for Contract switch recommendations,
we split the data in two ways: first, into an 80%/20% division
of training/testing; and second, into a 50%/50% division
(different splits were used to ensure that any results found

were not unduly sensitive to any arbitrariness in the split).
Our tool was used to find a recommendation for the best
contract to switch to, given the user’s power usage for the
training set. We then tested whether, if that recommendation
were followed and the user switched contracts, the bill would
be the lowest possible. Of the 30 datasets we used, our
recommendation tool gave the optimal contract switch in 87%
of the cases for the 80/20 split, and 90% of the cases in
the 50/50 split. (The difference indicates a shift in usage
pattern.) Other tests indicate a comparable rate of success for
the various recommendation components. Detailed results are
omitted owing to lack of space.

V. CONCLUSION

With the advent of ubiquitous electricity smart-meter pres-
ence in households, there is a need for advanced software
tools which can enable the end-user to understand his or her
electricity usage. The availability of large amounts of data
should enable users to make informed decisions about how
best to choose providers and contracts, and how to alter their
own electricity usage to lower their bills, thus saving both
money, and also, potentially, energy.

In the current paper we presented a prototype, web-based
implementation underpinned by the use of argumentation the-
ory and linear optimization, as a step towards this end. The tool
combines a large number of visualization and recommendation
components, and tests indicate it may be highly successful in
reducing power bills. Abstract argumentation was used to bring
rational structures underpinning recommendations to the user.

Future work will study automatic methods for the disaggre-
gation of appliances from aggregated data.
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