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ABSTRACT
Energy disaggregation estimates appliance-by-appliance elec-
tricity consumption from a single meter that measures the
whole home’s electricity demand. Recently, deep neural net-
works have driven remarkable improvements in classification
performance in neighbouring machine learning fields such as
image classification and automatic speech recognition. In
this paper, we adapt three deep neural network architectures
to energy disaggregation: 1) a form of recurrent neural net-
work called ‘long short-term memory’ (LSTM); 2) denoising
autoencoders; and 3) a network which regresses the start
time, end time and average power demand of each appliance
activation. We use seven metrics to test the performance
of these algorithms on real aggregate power data from five
appliances. Tests are performed against a house not seen
during training and against houses seen during training. We
find that all three neural nets achieve better F1 scores (aver-
aged over all five appliances) than either combinatorial op-
timisation or factorial hidden Markov models and that our
neural net algorithms generalise well to an unseen house.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Connectionism
and neural nets; I.5.2 [Pattern Recognition]: Design Method-
ology—Pattern analysis, Classifier design and evaluation

Keywords
Energy disaggregation; neural networks; feature learning;
NILM; energy conservation; deep learning

1. INTRODUCTION
Energy disaggregation (also called non-intrusive load mon-

itoring or NILM) is a computational technique for estimating
the power demand of individual appliances from a single me-
ter which measures the combined demand of multiple appli-
ances. One use-case is the production of itemised electricity
bills from a single, whole-home smart meter. The ultimate
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Figure 1: Example power demand during one activa-
tion of the washing machine in UK-DALE House 1.

aim might be to help users reduce their energy consumption;
or to help operators to manage the grid; or to identify faulty
appliances; or to survey appliance usage behaviour.

Research on NILM started with the seminal work of George
Hart [1, 2] in the mid-1980s. Hart described a ‘signature tax-
onomy’ of features [2] and his earliest work from 1984 de-
scribed experiments of extracting more detailed features1.
However, Hart decided to focus on extracting only transi-
tions between steady-states. Many NILM algorithms de-
signed for low frequency data (1 Hz or slower) follow Hart’s
lead and only extract a small number of features. In con-
tract, in high frequency NILM (sampling at kHz or even
MHz), there are numerous examples in the literature of man-
ually engineering rich feature extractors (e.g. [3, 4]).

Humans can learn to detect appliances in aggregate data
by eye, especially appliances with feature-rich signatures
such as the washing machine signature shown in Figure 1.
Humans almost certainly make use of a variety of features
such as the rapid on-off cycling of the motor (which pro-
duces the rapid ∼ 200 watt oscillations), the ramps towards
the end as the washer starts to rapidly spin the clothes etc.
We could consider hand-engineering feature extractors for
these rich features. But this would be time consuming and
the resulting feature detectors may not be robust to noise
and artefacts. Two key research questions emerge: Could
an algorithm automatically learn to detect these features?
Can we learn anything from neighbouring machine learning
fields such as image classification?

Before 2012, the dominant approach to extracting features
for image classification was to hand-engineer feature detec-
tors such as scale-invariant feature transform [5] (SIFT) and
difference of Gaussians (DoG). Then, in 2012, Krizhevsky et

1This claim is taken from Hart 1992 [2] because no copy of
George Hart’s 1984 technical report was available.
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al.’s winning algorithm [6] in the ImageNet Large Scale Vi-
sual Recognition Challenge achieved a substantially lower
error score (15%) than the second-best approach (26%).
Krizhevsky et al.’s approach did not use hand-engineered
feature detectors. Instead they used a deep neural network
which automatically learnt to extract a hierarchy of features
from the raw image. Deep learning is now a dominant ap-
proach not only in image classification but also fields such
as automatic speech recognition [7], machine translation [8],
even learning to play computer games from scratch [9]!

In this paper, we investigate whether deep neural nets can
be applied to energy disaggregation. The use of ‘small’ neu-
ral nets on NILM dates back at least to Roos et al. 1994 [10]
(although that paper was just a proposal) and continued
with [11, 12, 13, 14] but these small nets do not appear to
learn a hierarchy of feature detectors. A big breakthrough in
image classification came when the compute power (courtesy
of GPUs) became available to train deep neural networks on
large amounts of data. In the present research, we want
to see if deep neural nets can deliver good performance on
energy disaggregation.

Our main contribution is to adapt three deep neural net-
work architectures to NILM. For each architecture, we train
one network per target appliance. We compare two bench-
mark disaggregation algorithms (combinatorial optimisation
and factorial hidden Markov models) to the disaggregation
performance of our three deep neural nets using seven met-
rics. We also examine how well our neural nets generalise
to appliances in houses not seen during training because,
ultimately, when NILM is used ‘in the field’ we very rarely
have ground truth appliance data for the houses for which
we want to disaggregate. So it is essential that NILM algo-
rithms can generalise to unseen houses.

Please note that, once trained, our neural nets do not need
ground truth appliance data from each house! End-users
would only need to provide aggregate data. This is because
each neural network should learn the ‘essence’ of its target
appliance such that it can generalise to unseen instances of
that appliance. In a similar fashion, neural networks trained
to do image classification are trained on many examples of
each category (dogs, cats, etc.) and generalise to unseen
examples of each category.

To provide more context, we will briefly sketch how our
neural networks could be deployed at scale, in the wild. Each
net would undergo supervised training on many examples of
its target appliance type so each network learns to generalise
well to unseen appliances.

Training is computationally expensive (days of processing
on a fast GPU). But training does not have to be performed
often. Once these networks are trained, inference is much
cheaper (around a second of processing per network on a fast
GPU for a week of aggregate data). Aggregate data from
unseen houses would be fed through each network. Each
network should filter out the power demand for its target
appliance. This processing would probably be too computa-
tionally expensive to run on an embedded processor inside
a smart meter or in-home-display. Instead, the aggregate
data could be sent from the smart meter to the cloud. The
storage requirements for one 16 bit integer sample (0-64 kW
in 1 watt steps) every ten seconds is 17 kilobytes per day
uncompressed. This signal should be easily compressible
because there are numerous periods in domestic aggregate
power demand with little or no change. With a compres-

sion ratio of 5:1, and ignoring the datetime index, the total
storage requirements for a year of data from 10 million users
would be 13 terabytes (which could fit on two 8 TB disks). If
one week of aggregate data can be processed in one second
per home (which should be possible given further optimi-
sation) then data from 10 million users could be processed
by 16 GPU compute nodes. Alternatively, disaggregation
could be performed on a compute device within each home
(a modern laptop or mobile phone or a dedicated ‘disaggre-
gation hub’ could handle the disaggregation). A GPU is not
required for disaggregation, although it makes it faster.

This paper is structured as follows: In Section 2 we pro-
vide a very brief introduction to artificial neural nets. In
Section 3 we describe how we prepare the training data for
our nets and how we ‘augment’ the training data by syn-
thesising additional data. In Section 4 we describe how we
adapted three neural net architectures to NILM. In Section 5
we describe how we do disaggregation with our nets. In Sec-
tion 6 we present the disaggregation results of our three
neural nets and two benchmark NILM algorithms. Finally,
in Section 7 discuss our results, offer our conclusions and
describe some possible future directions for research.

2. INTRODUCTION TO NEURAL NETS
An artificial neural network (ANN) is a directed graph

where the nodes are artificial neurons and the edges allow
information from one neuron to pass to another neuron (or
the same neuron in a future time step). Neurons are typ-
ically arranged into layers such that each neuron in layer
l connects to every neuron in layer l + 1. Connections are
weighted and it is through modification of these weights that
ANNs learn. ANNs have an input layer and an output layer.
Any layers in between are called hidden layers. The forward
pass of an ANN is where information flows from the input
layer, through any hidden layers, to the output. Learning
(updating the weights) happens during the backwards pass.

2.1 Forwards pass
Each artificial neuron calculates a weighted sum of its in-

puts, adds a learnt bias and passes this sum through an
activation function. Consider a neuron which receives I in-
puts. The value of each input is represented by input vector
x. The weight on the connection from input i to neuron
h is denoted by wih (so w is the ‘weights matrix’). The
weighted sum (also called the ‘network input’) of the inputs

into neuron h can be written ah =
∑I

i=1 xiwih. The net-
work input ah is then passed through an activation function
θ to produce the neuron’s final output bh where bh = θ(ah).
In this paper, we use the following activation functions: lin-
ear: θ(x) = x; rectified linear (ReLU): θ(x) = max(0, x);

hyperbolic tangent (tanh): θ(x) = sinh x
cosh x

= ex−e−x

ex+e−x .
Multiple nonlinear hidden layers can be used to re-represent

the input data (hopefully by learning a hierarchy of feature
detectors), which gives deep nonlinear networks a great deal
of expressive power [15, 16].

2.2 Backwards pass
The basic idea of the backwards pass it to first do a for-

wards pass through the entire network to get the network’s
output for a specific network input. Then compute the error
of the output relative to the target (in all our experiments
we use the mean squared error (MSE) as the objective func-



tion). Then modify the weights in the direction which should
reduce the error.

In practice, the forward pass is often computed over a
batch of randomly selected input vectors. In our work, we
use a batch size of 64 sequences per batch for all but the
largest recurrent neural network (RNN) experiments. In our
largest RNNs we use a batch size of 16 (to allow the network
to fit into the 3GB of RAM on our GPU).

How do we modify each weight to reduce the error? It
would be computationally intractable to enumerate the en-
tire error surface. MSE gives a smooth error surface and
the activation functions are differentiable hence we can use
gradient descent. The first step is to compute the gradi-
ent of the error surface at the position for current batch by
calculating the derivative of the objective function with re-
spect to each weight. Then we modify each weight by adding
the gradient multiplied by a ‘learning rate’ scalar parame-
ter. To efficiently compute the gradient (in O(W ) time) we
use the backpropagation algorithm [17, 18, 19]. In all our
experiments we use stochastic gradient descent (SGD) with
Nesterov momentum of 0.9.

2.3 Convolutional neural nets
Consider the task of identifying objects in a photograph.

No matter if we hand engineer feature detectors or learn fea-
ture detectors from the data, it turns out that useful ‘low
level’ features concern small patches of the image and in-
clude features such as edges of different orientations, cor-
ners, blobs etc. To extract these features, we want to build
a small number of feature detectors (one for horizontal lines,
one for blobs etc.) with small receptive fields (overlapping
sub-regions of the input image) and slide these feature de-
tectors across the entire image. Convolutional neural nets
(CNNs) [20, 21, 22] build a small number of filters, each
with a small receptive field, and these filters are duplicated
(with shared weights) across the entire input.

Similarly to computer vision tasks, in time series problems
we often want to extract a small number of low level features
with a small receptive fields across the entire input. All of
our nets use at least one 1D convolutional layer at the input.

3. TRAINING DATA
Deep neural nets need a lot of training data because they

have a large number of trainable parameters (the network
weights and biases). The nets described in this paper have
between 1 million to 150 million trainable parameters. Large
training datasets are important. It is also common practice
in deep learning to increase the effective size of the training
set by duplicating the training data many times and apply-
ing realistic transformations to each copy. For example, in
image classification, we might flip the image horizontally or
apply slight affine transformations.

A related approach to creating a large training dataset is
to generate simulated data. For example, Google DeepMind
train their algorithms [9] on computer games because they
can generate an effectively infinite amount of training data.
Realistic synthetic speech audio data or natural images are
harder to produce.

In energy disaggregation, we have the advantage that gen-
erating effectively infinite amounts of synthetic aggregate
data is relatively easy by randomly combining real appli-
ance activations. (We define an ‘appliance activation’ to be
the power drawn by a single appliance over one complete cy-

cle of that appliance. For example, Figure 1 shows a single
activation for a washing machine.) We trained our nets on
both synthetic aggregate data and real aggregate data in a
50:50 ratio. We found that synthetic data acts as a regu-
lariser. In other words, training on a mix of synthetic and
real aggregate data rather than just real data appears to
improve the net’s ability to generalise to unseen houses. For
validation and testing we use only real data (not synthetic).

We used UK-DALE [23] as our source dataset. Each
submeter in UK-DALE samples once every 6 seconds. All
houses record aggregate apparent mains power once every
6 seconds. Houses 1, 2 and 5 also record active and reactive
mains power once a second. In these houses, we downsam-
pled the 1 second active mains power to 6 seconds to align
with the submetered data and used this as the real aggre-
gate data from these houses. Any gaps in appliance data
shorter than 3 minutes are assumed to be due to RF issues
and so are filled by forward-filling. Any gaps longer than
3 minutes are assumed to be due to the appliance and meter
being switched off and so are filled with zeros.

We manually checked a random selection of appliance ac-
tivations from every house. The UK-DALE metadata shows
that House 4’s microwave and washing machine share a sin-
gle meter (a fact that we manually verified) and hence these
appliances from House 4 are not used in our training data.

We train one network per target appliance. The target
(i.e. the desired output of the net) is the power demand of
the target appliance. The input to every net we describe
in this paper is a window of aggregate power demand. The
window width is decided on an appliance-by-appliance basis
and varies from 128 samples (13 minutes) for the kettle to
1536 samples (2.5 hours) for the dish washer. We found that
increasing the window size hurts disaggregation performance
for short-duration appliances (for example, using a sequence
length of 1024 for the fridge resulted in the autoencoder
(AE) failing to learn anything useful and the ‘rectangles’ net
achieved an F1 score of 0.68; reducing the sequence length
to 512 allowed the AE to get an F1 score of 0.87 and the
‘rectangles’ net got a score of 0.82). On the other hand, it is
important to ensure that the window width is long enough
to capture the majority of the appliance activations.

For each house, we reserved the last week of data for test-
ing and used the rest of the data for training. The number
of appliance training activations is show in Table 1 and the
number of testing activations is shown in Table 2. The spe-
cific houses used for training and testing is shown in Table 3.

3.1 Choice of appliances
We used five target appliances in all our experiments: the

fridge, washing machine, dish washer, kettle and microwave.
We chose these appliances because each is present in at least
three houses in UK-DALE. This means that, for each appli-
ance, we can train our nets on at least two houses and test
on a different house. These five appliances consume a signif-
icant proportion of energy and the five appliances represent
a range of different power ‘signatures’ from the simple on/off
of the kettle to the complex pattern shown by the washing
machine (Figure 1).

‘Small’ appliances such as games consoles and phone charg-
ers are problematic for many NILM algorithms because the
effect of small appliances on aggregate power demand tends
to get lost in the noise. By definition, small appliances do
not consume much energy individually but modern homes



tend to have a large number of such appliances so their com-
bined consumption can be significant. Hence it would be
useful to detect small appliances using NILM. We have not
explored whether our neural nets perform well on ‘small’
appliances but we plan to in the future.

3.2 Extract activations
Appliance activations are extracted using NILMTK’s [24]

Electric.get_activations() method. The arguments we
passed to get_activations() for each appliance are shown
in Table 4. On simple appliances such as toasters, we extract
activations by finding strictly consecutive samples above some
threshold power. We then throw away any activations shorter
than some threshold duration (to ignore spurious spikes).
For more complex appliances such as washing machines whose
power demand can drop below threshold for short periods
during a cycle, NILMTK ignores short periods of sub-threshold
power demand.

3.3 Select windows of real aggregate data
First we locate all the activations of the target appliance

in the home’s submeter data for the target appliance. Then,
for each training example, the code decides with 50% prob-
ability whether this example should include the target ap-
pliance or not. If the code decides not include the target
appliance then it finds a random window of aggregate data
in which there are no activations of the target appliance.
Otherwise, the code randomly selects a target appliance ac-
tivation and randomly positions this activation within the
window of data that will be shown to the net as the target
(with the constraint that the activation must be captured
completely in the window of data shown to the net, unless
the window is too short to contain the entire activation).
The corresponding time window of real aggregate data is
also loaded and shown to the net and its input. If other
activations of the target appliance happen to appear in the
aggregate data then these are not included in the target
sequence; the net is trained to focus on the first complete
target appliance activation in the aggregate data.

3.4 Synthetic aggregate data
To create synthetic aggregate data we start by extract-

ing a set of appliance activations for five appliances across
all training houses: kettle, washing machine, dish washer,
microwave and fridge. To create a single sequence of syn-
thetic data, we start with two vectors of zeros: one vector
will become the input to the net; the other will become the
target. The length of each vector defines the ‘window width’
of data that the network sees. We go through the five appli-
ance classes and decide whether or not to add an activation
of that class to the training sequence. There is a 50% chance
that the target appliance will appear in the sequence and a
25% chance for each other ‘distractor’ appliance. For each
selected appliance class, we randomly select an appliance
activation and then randomly pick where to add that acti-
vation on the input vector. Distractor appliances can appear
anywhere in the sequence (even if this means that only part
of the activation will be included in the sequence). The
target appliance activation must be completely contained
within the sequence (unless it is too large to fit).

Of course, this relatively näıve approach to synthesising
aggregate data ignores a lot of structure that appears in
real aggregate data. For example, the kettle and toaster

Table 1: Number of training activations per house.

1 2 3 4 5

Kettle 2836 543 44 716 176
Fridge 16 336 3526 0 4681 1488
Washing machine 530 53 0 0 51
Microwave 3266 387 0 0 28
Dish washer 197 98 0 23 0

Table 2: Number of testing activations per house.

1 2 3 4 5

Kettle 54 29 40 50 18
Fridge 168 277 0 145 140
Washing machine 10 4 0 0 2
Microwave 90 9 0 0 4
Dish washer 3 7 0 3

might often appear within a few minutes of each other in
real data, but our simple ‘simulator’ is completely unaware
of this sort of structure. We expect that a more realistic
simulator might increase the performance of deep neural nets
on energy disaggregation.

3.5 Implementation of data processing
All our code is written in Python and we make use Pandas,

Numpy and NILMTK for data preparation. Each network
receives data in a mini-batch of 64 sequences (except for the
large RNN sequences, in which case we use a batch size of
16 sequences). The code is multi-threaded so the CPU can
be busy preparing one batch of data on the fly whilst the
GPU is busy training on the previous batch.

3.6 Standardisation
In general, neural nets learn most efficiently if the input

data has zero mean. First, the mean of each sequence is
subtracted from the sequence to give each sequence a mean
of zero. Every input sequence is divided by the standard
deviation of a random sample of the training set. We do not
divide each sequence by its own standard deviation because
that would change the scaling and the scaling is likely to be
important for NILM.

Forcing each sequence to have zero mean throws away in-
formation. Information that NILM algorithms such as com-
binatorial optimisation and factorial hidden Markov models
rely on. We have done some preliminary experiments and
found that neural nets appear to be able to generalise bet-
ter if we independently centre each sequence. But there
are likely to be ways to have the best of both worlds: i.e.
to give the network information about the absolute power
whilst also allowing the network to generalise well.

One big advantage of training our nets on sequences which
have been independently centred is that our nets do not need
to consider vampire (always on) loads.

Targets are divided by a hand-coded ‘maximum power
demand’ for each appliance to put the target power demand
into the range [0, 1].

4. NEURAL NETWORK ARCHITECTURES
In this section we describe how we adapted three different

neural net architectures to do NILM.



Table 3: Houses used for training and testing.

Training Testing

Kettle 1, 2, 3, 4 5
Fridge 1, 2, 4 5
Washing machine 1, 5 2
Microwave 1, 2 5
Dish washer 1, 2 5

Table 4: Arguments passed to get_activations().

Max On power Min. on Min. off
Appliance power threshold duration duration

(watts) (watts) (secs) (secs)

Kettle 3100 2000 12 0
Fridge 300 50 60 12
Washing m. 2500 20 1800 160
Microwave 3000 200 12 30
Dish washer 2500 10 1800 1800

4.1 Recurrent Neural Networks
In Section 2 we described feed forward neural networks

which map from a single input vector to a single output
vector. When the network is shown a second input vector,
it has no memory of the previous input.

Recurrent neural networks (RNNs) allow cycles in the net-
work graph such that the output from neuron i in layer l at
time step t is fed via weighted connections to every neuron
in layer l (including neuron i) at time step t+1. This allows
RNNs, in principal, to map from the entire history of the
inputs to an output vector. This makes RNNs especially
well suited to sequential data. In our work, we train RNNs
using backpropagation through time (BPTT) [25].

In practice, RNNs can suffer from the ‘vanishing gradient’
problem [26] where gradient information disappears or ex-
plodes as it is propagated back through time. This can limit
an RNN’s memory. One solution to this problem is the ‘long
short-term memory’ (LSTM) architecture [26] which uses a
‘memory cell’ with a gated input, gated output and gated
feedback loop. The intuition behind LSTM is that it is a
differentiable latch (where a ‘latch’ is the fundamental unit
of a digital computer’s RAM). LSTMs have been used with
success on a wide variety of sequence tasks including auto-
matic speech recognition [7, 27] and machine translation [8].

An additional enhancement to RNNs is to use bidirectional
layers. In a bidirectional RNN, there are effectively two par-
allel RNNs, one reads the input sequence forwards and the
other reads the input sequence backwards. The output from
the forwards and backwards halves of the network are com-
bined either by concatenating them or doing an element-wise
sum (we experimented with both and settled on concatena-
tion, although element-wise sum appeared to work almost
as well and is computationally cheaper).

We should note that bidirectional RNNs are not naturally
suited to doing online disaggregation. Bidirectional RNNs
could still be used for online disaggregation if we frame ‘on-
line disaggregation’ as doing frequent, small batches of offline
disaggregation.

We experimented with both RNNs and LSTMs and settled
on the following architecture for energy disaggregation:

1. Input (length determined by appliance duration)

2. 1D conv (filter size=4, stride=1, number of filters=16,
activation function=linear, border mode=same)

3. bidirectional LSTM (N=128, with peepholes)

4. bidirectional LSTM (N=256, with peepholes)

5. Fully connected (N=128, activation function=TanH)

6. Fully connected (N=1, activation function=linear)

At each time step, the network sees a single sample of
aggregate power data and outputs a single sample of power
data for the target appliance.

In principal, the convolutional layer should not be neces-
sary (because the LSTMs should be able to remember all the
context). But we found the addition of a convolution layer
to slightly increase performance (the conv. layer convolves
over the time axis). We also experimented with adding a
conv. layer between the two LSTM layers with a stride > 1
to implement hierarchical subsampling [28]. This showed
promise but we did not use it for our final experiments.

On the backwards pass, we clip the gradient at [-10, 10] as
per Alex Graves in [29]. To speed up computation, we prop-
agate the gradient backwards a maximum of 500 time steps.
Figure 2 shows an example output of our LSTM network in
the two ‘RNN’ rows.

4.2 Denoising Autoencoders
In this section, we frame energy disaggregation as a ‘de-

noising’ task. Typical denoising tasks include removing grain
from an old photograph; or removing reverb from an audio
recording; or even in-filling a masked part of an image. En-
ergy disaggregation can be viewed as an attempt to recover
the ‘clean’ power demand signal of the target appliance from
the background ‘noise’ produced by the other appliances. A
successful neural network architecture for denoising tasks is
the ‘denoising autoencoder’.

An autoencoder (AE) is simply a network which tries to
reconstruct the input. Described like this, AEs might not
sound very useful! The key is that AEs first encode the in-
put to a compact vector representation (in the ‘code layer’)
and then decode to reconstruct the input. The simplest way
of forcing the net to discover a compact representation of the
data is to have a code layer with less dimensions than the
input. In this case, the AE is doing dimensionality reduc-
tion. Indeed, a linear AE with a single hidden layer is almost
equivalent to PCA. But AEs can be deep and non-linear.

A denoising autoencoder (dAE) [30] is an autoencoder
which attempts to reconstruct a clean target from a noisy
input. dAEs are typically trained by artificially corrupting
a signal before it goes into the net’s input, and using the
clean signal as the net’s target. In NILM, we consider the
corruption as being the power demand from the other ap-
pliances. So we do not add noise artificially. Instead we use
the aggregate power demand as the (noisy) input to the net
and ask the net to reconstruct the clean power demand of
the target appliance.

The first and last layers of our NILM dAEs are 1D con-
volutional layers. We use convolutional layers because we
want the network to learn low level feature detectors which
are applied equally across the entire input window (for ex-
ample, a step change of 1000 watts might be a useful feature
to extract, no matter where it is found in the input). The



aim is to provide some invariance to where exactly the acti-
vation is positioned within the input window. The last layer
does a ‘deconvolution’.

The exact architecture is as follows:

1. Input (length determined by appliance duration)

2. 1D conv (filter size=4, stride=1, number of filters=8,
activation function=linear, border mode=valid)

3. Fully connected (N=(sequence length - 3) × 8,
activation function=ReLU)

4. Fully connected (N=128; activation function=ReLU)

5. Fully connected (N=(sequence length - 3) × 8,
activation function=ReLU)

6. 1D conv (filter size=4, stride=1, number of filters=1,
activation function=linear, border mode=valid)

Layer 4 is the middle, code layer. The entire dAE is
trained end-to-end in one go (we do not do layer-wise pre-
training as we found it did not increase performance). We do
not tie the weights as we found this also appears to not en-
hance NILM performance. An example output of our NILM
dAE is shown in Figure 2 in the two ‘Autoencoder’ rows.

4.3 Regress Start Time, End Time & Power
Many applications of energy disaggregation do not require

a detailed second-by-second reconstruction of the appliance
power demand. Instead, most energy disaggregation use-
cases require, for each appliance activation, the identification
of the start time, end time and energy consumed. In other
words, we want to draw a rectangle around each appliance
activation in the aggregate data where the left side of the
rectangle is the start time, the right side is the end time and
the height is the average power demand of the appliance
between the start and end times.

Deep neural networks have been used with great success
on related tasks. For example, Nouri used deep neural net-
works to estimate the 2D location of ‘facial keypoints’ in
images of faces [31]. Example ‘keypoints’ are ‘left eye cen-
tre’ or ‘mouth centre top lip’. The input to Nouri’s neural
net is the raw image of a face. The output of the network is
a set of x, y coordinates for each keypoint.

Our idea was to train a neural network to estimate three
scalar, real-valued outputs: the start time, the end time
and mean power demand of the first appliance activation to
appear in the aggregate power signal. If there is no target
appliance in the aggregate data then all three outputs should
be zero. If there is more than one activation in the aggre-
gate signal then the network should ignore all but the first
activation. All outputs are in the range [0, 1]. The start
and end times are encoded as a proportion of the input’s
time window. For example, the start of the time window is
encoded as 0, the end is encoded as 1 and half way through
the time window is encoded as 0.5. For example, consider
a scenario where the input window width is 10 minutes and
an appliance activation starts 1 minute into the window and
ends 1 minute before the end of the window. This activation
would be encoded as having a start location of 0.1 and an
end location of 0.9. Example output is shown in Figure 2 in
the two ‘Rectangles’ rows.

The three target values for each sequence are calculated
during data pre-processing. As for all of our other networks,
the network’s objective is to minimise the mean squared
error. The exact architecture is as follows:

1. Input (length determined by appliance duration)

2. 1D conv (filter size=4, stride=1, number of filters=16,
activation function=linear, border mode=valid)

3. 1D conv (filter size=4, stride=1, number of filters=16,
activation function=linear, border mode=valid)

4. Fully connected (N=4096, activation function=ReLU)

5. Fully connected (N=3072; activation function=ReLU)

6. Fully connected (N=2048, activation function=ReLU)

7. Fully connected (N=512, activation function=ReLU)

8. Fully connected (N=3, activation function=linear)

4.4 Neural net implementation
We implemented our neural nets in Python using the

Lasagne library2. Lasagne is built on top of Theano [32,
33]. We trained our nets on an nVidia GTX 780Ti GPU
with 3 GB of RAM (but note that Theano also allows code
to be run on the CPU without requiring any changes to the
user’s code). On this GPU, our nets typically took between
1 and 12 hours to train per appliance. The exact code used
to create the results in paper is available in our ‘NeuralNILM
Prototype’ repository3 and a more elegant (hopefully!) re-
write is available in our ‘NeuralNILM’ repository4.

We manually defined the number of weight updates to per-
form during training for each experiment. For the RNNs we
performed 10,000 updates, for the denoising autoencoders
we performed 100,000 and for the regression network we
performed 300,000 updates. Neither the RNNs nor the AEs
appeared to continue learning past this number of updates.
The regression networks appear to keep learning no matter
how many updates we perform!

The nets have a wide variation in the number of trainable
parameters. The largest dAE nets range from 1M to 150M
(depending on the input size); the RNNs all had 1M pa-
rameters and the regression nets varied from 28M to 120M
parameters (depending on the input size).

All our network weights were initialised randomly using
Lasagne’s default initialisation. All of the experiments pre-
sented in this paper trained end-to-end from random initial-
isation (no layerwise pre-training).

5. DISAGGREGATION
How do we disaggregate arbitrarily long sequences of ag-

gregate data given that each net has an input window dura-
tion of, at most, a few hours? We first pad the beginning and
end of the input with zeros. Then we slide the net along the
input sequence. As such, the first sequence we show to the
network will be all zeros. Then we shift the input window
STRIDE samples to the right, where STRIDE is a manually
defined positive, non-zero integer. If STRIDE is less than the
length of the net’s input window then the net will see over-
lapping input sequences. This allows the network to have
multiple attempts at processing each appliance activation in
the aggregate signal, and on each attempt each activation
will be shifted to the left by STRIDE samples.

Over the course of disaggregation, the network produces
multiple estimated values for each time step because we give
the network overlapping segments of the input. For our first

2github.com/Lasagne/Lasagne
3github.com/JackKelly/neuralnilm prototype
4github.com/JackKelly/neuralnilm

https://github.com/Lasagne/Lasagne
http://www.deeplearning.net/software/theano/
https://github.com/JackKelly/neuralnilm_prototype
https://github.com/JackKelly/neuralnilm_prototype
https://github.com/JackKelly/neuralnilm
https://github.com/Lasagne/Lasagne
https://github.com/JackKelly/neuralnilm_prototype
https://github.com/JackKelly/neuralnilm


two network architectures, we combine the multiple values
per timestep simply by taking the mean.

Combing the output from our third network is a little more
complex. We layer every predicted ‘appliance rectangle’ on
top of each other. We measure the overlap and normalise the
overlap to [0, 1]. This gives a probabilistic output for each
appliance’s power demand. To convert this to a single vector
per appliance, we threshold the power and probability.

6. RESULTS
The disaggregation results on an unseen house are shown

in Figure 3. The results on houses seen during training are
shown in Figure 4.

We used benchmark implementations from NILMTK [24]
of the combinatorial optimisation (CO) and factorial hidden
Markov model (FHMM) algorithms.

On the unseen house (Figure 3), both the denoising au-
toencoder and the net which regresses the start time, end
time and power demand (the ‘rectangles’ architecture) out-
perform CO and FHMM on every appliance on F1 score,
precision score, proportion of total energy correctly assigned
and mean absolute error. The LSTM out-performs CO and
FHMM on two-state appliances (kettle, fridge and microwave)
but falls behind CO and FHMM on multi-state appliances
(dish washer and washing machine).

On the houses seen during training (Figure 4), the dAE
outperforms CO and FHMM on every appliance on every
metric except relative error in total energy. The ‘rectangles’
architecture outperforms CO and FHMM on every appliance
(except the microwave) on F1, precision, accuracy, propor-
tion of total energy correctly assigned and mean absolute
error.

The full disaggregated time series for all our algorithms
and the aggregate data and appliance ground truth data are
available at www.doc.ic.ac.uk/∼dk3810/neuralnilm

The metrics we used are:

TP = number of true positives (1)

FP = number of false positives (2)

FN = number of false negatives (3)

P = number of positives in ground truth (4)

N = number of negatives in ground truth (5)

E = total actual energy (6)

Ê = total predicted energy (7)

y
(i)
t = appliance i actual power at time t (8)

ŷ
(i)
t = appliance i estimated power at time t (9)

ȳt = aggregate actual power at time t (10)

recall =
TP

TP + FN
(11)

precision =
TP

TP + FP
(12)

F1 = 2× precision× recall

precision + recall
(13)

accuracy =
TP + TN

P + N
(14)

relative error in total energy =
|Ê − E|

max(E, Ê)
(15)
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Figure 3: Disaggregation performance on a house
not seen during training.

mean absolute error = 1/T

T∑
t=1

|ŷt − yt| (16)

proportion of total energy correctly assigned =

1−
∑T

t=1

∑n
i=1 |ŷ

(i)
t − y

(i)
t |

2
∑T

t=1 ȳt
(17)

The proportion of total energy correctly assigned is taken
from [34].

7. CONCLUSIONS & FUTURE WORK
We have adapted three neural network architectures to

NILM. The denoising autoencoder and the ‘rectangles’ ar-
chitectures perform well, especially on unseen houses. We
believe that deep neural nets show great promise for NILM.
But there is plenty of work still to do!

It is worth noting that our comparison between each ar-
chitecture is not entirely fair because the architectures have
a wide range of trainable parameters. For example, every
LSTM we used had 1M parameters whilst the larger dAE
and rectangles nets had over 150M parameters (we did try
training an LSTM with more parameters but it did not ap-
pear to improve performance).

Our LSTM results suggest that LSTMs work best for two-
state appliances but do not perform well on multi-state ap-
pliances such as the dish washer and washing machine. One
possible reason is that, for these appliances, informative
‘events’ in the power signal can be many time steps apart
(e.g. for the washing machine there might be over 1,000
time steps between the first heater activation and the spin
cycle). In principal, LSTMs have an arbitrarily long mem-
ory. But these long gaps between informative events may

http://www.doc.ic.ac.uk/~dk3810/neuralnilm
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Figure 2: Example outputs produced by all three neural network architectures for three appliances. Each
column shows data for a different appliance. The rows are in three groups (the tall grey rectangles on the far
left). The top group shows measured data from House 1. The top row shows the measured aggregate power
data from House 1 (the input to the neural nets). The Y-axis scale for the aggregate data is standardised
such that its mean is 0 and its standard deviation is 1 across the data set. The Y-axis range for all other
subplots is [0, 1]. The second row shows the single-appliance power demand (i.e. what the neural nets are
trying to estimate). The middle group of rows shows the raw output from each neural network (just a single
pass through each network). The bottom group of rows shows the result of sliding the network over the
aggregate data with STRIDE=16 and overlapping the output. Please note that the ‘rectangles’ net is trained
such that the height of the output rectangle should be the mean power demand over the duration of the
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Figure 4: Disaggregation performance on houses
seen during training (the time window used for test-
ing is different to that used for training).

present a challenge for LSTMs. Further work is required
to understand exactly why LSTMs struggle on multi-state
appliances. One aspect of our LSTM results that we did ex-
pect was that processing overlapping windows of aggregate
data would not be necessary for LSTMs because they always
output the same estimates, no matter what the offset of the
input window (see Figure 2).

We must also note that the FHMM implementation used
in this work is not ‘state of the art’ and neither is it especially
tuned. Other FHMM implementations are likely to perform
better. We encourage other researchers to download5 our
disaggregation estimates and ground truth data and directly
compare against our algorithms!

This work represents just a first step towards adapting the
vast number of techniques from the deep learning commu-
nity to NILM, for example:

7.1 Train on more data
UK-DALE has many hundreds of days of data but only

from five houses. Any machine learning algorithm is only
able to generalise if given enough variety in the training set.
For example, House 5’s dish washer sometimes has four acti-
vations of its heater but the dish washers in the two training
houses (1 and 2) only ever have two peaks. Hence the au-
toencoder completely ignores the first two peaks of House 5’s
dish washer! If neural nets are to learn to generalise well
then we must train on much larger numbers of appliances
(hundreds or thousands). This should help the networks to
generalise across the wide variation seen in some classes of
appliance.

5Data available from www.doc.ic.ac.uk/∼dk3810/neuralnilm

7.2 Unsupervised pre-training
In NILM, we generally have access to much more unla-

belled data than labelled data. One advantage of neural nets
is that they could, in principal, be ‘pre-trained’ on unlabelled
data before being fine-tuned on labelled data. ‘Pre-training’
should allow the networks to start to identify useful features
from the data but does not allow the nets to learn to label ap-
pliances. (Pre-training is rarely used in modern image classi-
fication tasks because very large labelled datasets are avail-
able for image classification. But in NILM we have much
more unlabelled data than labelled data, so pre-training is
likely to be useful.) After unsupervised pre-training, each
net would undergo supervised training. Instead of (or as
well as) pre-training on all available unlabelled data, it may
also be interesting to try pre-training largely on unlabelled
data from each house that we wish to disaggregate.

8. ACKNOWLEDGMENTS
Jack Kelly’s PhD is funded by the EPSRC and by In-

tel via their EU Doctoral Student Fellowship Programme.
The authors would like to thank Pedro Nascimento for his
comments on a draft of this manuscript.

9. REFERENCES
[1] G. W. Hart. Prototype nonintrusive appliance load

monitor. Technical report, MIT Energy Laboratory
and Electric Power Research Institute, Sept. 1985.

[2] G. W. Hart. Nonintrusive appliance load monitoring.
Proceedings of the IEEE, 80(12):1870–1891, Dec. 1992.
doi:10.1109/5.192069.

[3] S. B. Leeb, S. R. Shaw, and J. L. Kirtley Jr. Transient
event detection in spectral envelope estimates for
nonintrusive load monitoring. Power Delivery, IEEE
Transactions on, 10(3):1200–1210, 1995.
doi:10.1109/61.400897.

[4] N. Amirach, B. Xerri, B. Borloz, and C. Jauffret. A
new approach for event detection and feature
extraction for nilm. In Electronics, Circuits and
Systems (ICECS), 2014 21st IEEE International
Conference on, pages 287–290. IEEE, 2014.

[5] D. G. Lowe. Object recognition from local
scale-invariant features. In Computer vision, 1999.
The proceedings of the seventh IEEE international
conference on, volume 2, pages 1150–1157. IEEE,
1999.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton.
Imagenet classification with deep convolutional neural
networks. In F. Pereira, C. Burges, L. Bottou, and
K. Weinberger, editors, Advances in Neural
Information Processing Systems 25, pages 1097–1105.
Curran Associates, Inc., 2012.

[7] A. Graves and N. Jaitly. Towards end-to-end speech
recognition with recurrent neural networks. In
Proceedings of the 31st International Conference on
Machine Learning (ICML-14), pages 1764–1772, 2014.

[8] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to
sequence learning with neural networks. In
Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence,
and K. Weinberger, editors, Advances in Neural
Information Processing Systems 27, pages 3104–3112.
Curran Associates, Inc., 2014.

http://www.doc.ic.ac.uk/~dk3810/neuralnilm
http://dx.doi.org/10.1109/5.192069
http://dx.doi.org/10.1109/61.400897


[9] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu,
J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller,
A. K. Fidjeland, G. Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature,
518(7540):529–533, 2015.

[10] J. Roos, I. Lane, E. Botha, and G. P. Hancke. Using
neural networks for non-intrusive monitoring of
industrial electrical loads. In Instrumentation and
Measurement Technology Conference, 1994. IMTC/94.
Conference Proceedings. 10th Anniversary. Advanced
Technologies in I & M., 1994 IEEE, pages 1115–1118.
IEEE, 1994. doi:10.1109/IMTC.1994.351862.

[11] H.-T. Yang, H.-H. Chang, and C.-L. Lin. Design a
neural network for features selection in non-intrusive
monitoring of industrial electrical loads. In Computer
Supported Cooperative Work in Design, 2007.
CSCWD 2007. 11th International Conference on,
pages 1022–1027. IEEE, 2007.
doi:10.1109/CSCWD.2007.4281579.

[12] Y.-H. Lin and M.-S. Tsai. A novel feature extraction
method for the development of nonintrusive load
monitoring system based on BP-ANN. In 2010
International Symposium on Computer
Communication Control and Automation (3CA),
volume 2, pages 215–218. IEEE, 2010.
doi:10.1109/3CA.2010.5533571.

[13] A. G. Ruzzelli, C. Nicolas, A. Schoofs, and G. M.
O’Hare. Real-time recognition and profiling of
appliances through a single electricity sensor. In
Sensor Mesh and Ad Hoc Communications and
Networks (SECON), 2010 7th Annual IEEE
Communications Society Conference on, pages 1–9.
IEEE, 2010. doi:10.1109/SECON.2010.5508244.

[14] H.-H. Chang, P.-C. Chien, L.-S. Lin, and N. Chen.
Feature extraction of non-intrusive load-monitoring
system using genetic algorithm in smart meters. In
e-Business Engineering (ICEBE), 2011 IEEE 8th
International Conference on, pages 299–304. IEEE,
2011.

[15] Y. Bengio, Y. LeCun, et al. Scaling learning
algorithms towards AI. Large-scale kernel machines,
34(5), 2007.

[16] G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast
learning algorithm for deep belief nets. Neural
computation, 18(7):1527–1554, 2006.

[17] D. E. Rumelhart, G. E. Hinton, and R. J. Williams.
Learning internal representations by error
propagation. Technical report, DTIC Document, 1985.

[18] R. J. Williams and D. Zipser. Gradient-based learning
algorithms for recurrent networks and their
computational complexity. Back-propagation: Theory,
architectures and applications, pages 433–486, 1995.

[19] P. J. Werbos. Generalization of backpropagation with
application to a recurrent gas market model. Neural
Networks, 1(4):339–356, 1988.

[20] K. Fukushima. Neocognitron: A self-organizing neural
network model for a mechanism of pattern recognition
unaffected by shift in position. Biological cybernetics,
36(4):193–202, 1980.

[21] L. E. Atlas, T. Homma, and R. J. Marks II. An
artificial neural network for spatio-temporal bipolar
patterns: Application to phoneme classification. In

Proc. Neural Information Processing Systems (NIPS),
page 31, 1988.

[22] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to document
recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[23] J. Kelly and W. Knottenbelt. The UK-DALE dataset,
domestic appliance-level electricity demand and
whole-house demand from five uk homes. Scientific
Data, 2(150007), 2015. doi:10.1038/sdata.2015.7.

[24] N. Batra, J. Kelly, O. Parson, H. Dutta,
W. Knottenbelt, A. Rogers, A. Singh, and
M. Srivastava. NILMTK: An open source toolkit for
non-intrusive load monitoring. In Fifth International
Conference on Future Energy Systems (ACM
e-Energy), Cambridge, UK, 2014.
doi:10.1145/2602044.2602051.

[25] P. J. Werbos. Backpropagation through time: what it
does and how to do it. Proceedings of the IEEE,
78(10):1550–1560, 1990.

[26] S. Hochreiter and J. Schmidhuber. Long short-term
memory. Neural Computation, 9(8):1735–1780, 1997.
doi:10.1162/neco.1997.9.8.1735.

[27] J. Chorowski, D. Bahdanau, K. Cho, and Y. Bengio.
End-to-end continuous speech recognition using
attention-based recurrent nn: First results. 2014.

[28] A. Graves. Supervised sequence labelling with recurrent
neural networks, volume 385. Springer, 2012.
http://www.cs.toronto.edu/~graves/preprint.pdf.

[29] A. Graves. Generating sequences with recurrent neural
networks. 2013.

[30] P. Vincent, H. Larochelle, Y. Bengio, and P.-A.
Manzagol. Extracting and composing robust features
with denoising autoencoders. In Proceedings of the
25th international conference on Machine learning,
pages 1096–1103. ACM, 2008.

[31] D. Nouri. Using convolutional neural nets to detect
facial keypoints tutorial, 2014.
http://bit.ly/1OduG83.

[32] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin,
R. Pascanu, G. Desjardins, J. Turian,
D. Warde-Farley, and Y. Bengio. Theano: a CPU and
GPU math expression compiler. In Proceedings of the
Python for Scientific Computing Conference (SciPy),
June 2010. Oral Presentation.

[33] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. J.
Goodfellow, A. Bergeron, N. Bouchard, and
Y. Bengio. Theano: new features and speed
improvements. Deep Learning and Unsupervised
Feature Learning NIPS 2012 Workshop, 2012.

[34] J. Z. Kolter and M. J. Johnson. REDD: A public data
set for energy disaggregation research. In Workshop on
Data Mining Applications in Sustainability
(SIGKDD), San Diego, CA, volume 25, pages 59–62.
Citeseer, 2011.

http://dx.doi.org/10.1109/IMTC.1994.351862
http://dx.doi.org/10.1109/CSCWD.2007.4281579
http://dx.doi.org/10.1109/3CA.2010.5533571
http://dx.doi.org/10.1109/SECON.2010.5508244
http://dx.doi.org/10.1038/sdata.2015.7
http://dx.doi.org/10.1145/2602044.2602051
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.cs.toronto.edu/~graves/preprint.pdf
http://bit.ly/1OduG83

	Introduction
	Introduction to Neural Nets
	Forwards pass
	Backwards pass
	Convolutional neural nets

	Training Data
	Choice of appliances
	Extract activations
	Select windows of real aggregate data
	Synthetic aggregate data
	Implementation of data processing
	Standardisation

	Neural Network Architectures
	Recurrent Neural Networks
	Denoising Autoencoders
	Regress Start Time, End Time & Power
	Neural net implementation

	Disaggregation
	Results
	Conclusions & Future Work
	Train on more data
	Unsupervised pre-training

	Acknowledgments
	References

